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The Use of Cross-Section Warping Functions in Advanced Composite Rotor
Blade Analysis
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J. B. Kosmatka
Department of Applied Mechanics and Engineering Science
University of California, San Diego
La Jolla, California 92093

ntr i

Current helicopter rotor blade designs incorporate fiber composite materials as a
means of controlling weight, deformation, and vibration (i.e., structural tailoring).

“Although fiber composites are orthotropic in material property classification, they can

exhibit general anisotropic material behavior to applied loads (extension-bend-twist
coupling) when the fiber orientations do not coincide with the structural coordinate
system [1]. Exact analytical solutions of this problem based upon three-dimensional
elasticity are intractable. Three dimensional finite-element modeling may be applied,
however, this approach is too costly for the discretization necessary for accurate stress
and deformation determination. |

Instead one-dimensional beam-type models based upon standard or refined
theories are used. Standard beam theories, which are derived by extending the
Bernoulli-Euler theory to include extension-bend-twist coupling effects, have been
developed for thin-wall rectangular cross-sections and general nonhomogeneous cross-
sections [2,3]. In addition refined beam theories, which include the effects of transverse
shear deformation, exist for thin-wall single cell cross-sections. All of the existing one-
dimensional beam-type models yield only gross structural behavior such as force

" resultants, moments, extension, bending rotations, and twisting angles. Stress

distributions may be calculated according to kinematic (Bernoulli-Euler and Saint-Venant
torsion) hypotheses, but they do not reveal the inter-laminar shear states. Moreover, up
to 48 unique constants must be known for each different cross-section. These cross-
section constants provide important information concerning the beam axial, bending,
torsion, and shear stiffnesses, as well as coupling stiffnesses. But these constants, which



are dependent upon the general warping of the cross-section, can very significantly with
changes in cross-section geometry and/or material definition. Thus it becomes very
difficult for an analyst to assess how minor changes in the cross-section definition will
effect the overall blade behavior.

Alternatively, Saint-Venant's elasticity solutions for extension, bending, torsion,
and flexure of a prismatic beam can be used to analyze the cross-section of advanced
composite helicopter rotor blades. These elasticity solutions accurately describe the
displacement, stress (including inter-laminar shear), and general cross- -section warping
distribution for a given applied tip- -load condition. Thus, these solutions can be used to
complement existing one-dimensional beam theories by providing a means for: (1.)
determining the general three-dimensional warping of the cross-section, (2.) calculation
of the warping-dependent cross-section constants, and (3.) accurate calculation of the
stress distribution throughout the blade using the calculated shear and moment
resultants that can be determined from an appropriate derived one dimensional beam
theory. This beam theory must be derived using assumptions that insure that the
kinematic and stress fields are fully compatible with the aforementioned Saint-Venant
elasticity solutions.

Research Objectives

Durmg the contracted period, our research was concentrated into three areas:

Haw
o

1) The development of an accurate and a computationally efficient method for
predicting the cross-section warping functions in an arbitrary cross-section
composed of isotropic and/or anisotropic materials. This new method involved
using a "power series” “representation for the in-plane and out- of- -plane warping
functions and then solving for the power series coefficients using variational
pnncnples. Our work developed a theoret:ca| approach and computational
procedure for cross-sections composed of isotropic materials (Chapter 2) and
generally anisotropic materials (Chapter 3). In addition, a separate research effort
was undertaken to develop the “exact™ cross-section warping functions and fully

~ coupled three-dimensional dlsplacement and stress field for a tip-loaded
cantilevered beam havmg a solid elliptical cross-section and composed of generally
anisotropic materials (Chapter 4).” These exact solutions are extremely useful for
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vahda’ung the computatuonally predicted warpmg functions and also for correlation
of the stress and dlsplacements dnstnbutlons of a one-dimensional beam theory.

e - = - . .

2.)- The development of a general hugher-order one- dlmensmnal theory for anisotropic

beams. This theory is used to study the behavior of beams having an arbitrary
" nonhomogeneous cross-section, where the effects of shear deformation and local
cross-section deformatlon are included using the aforementioned cross-section
warping functions. Thus, it is imperative that the beam theory is derived so that the
kinematic and stress assumptions are fully compatible with those of the Saint-
Venant elasticity solutions. Numerical results have proven that this new beam
theory accurately predicts both the displacement and stress distribution (all six
components). In our work, we first developed a linear dynamic one-dimensional
theory for isotropic beams, where we studied the static and free vibrational behavior
so as to assess the importance of the in-plane and out-of-plane warping functions
(Cﬁa’pta?5). Our results show that the in-plane functions are required for acquiring
accurate shear stress distributions, whereas only the out-of-plane warping function
“is required for static and free vibration displacement information. Second, we
developed a general nonlinear one-dimensional theory for spinning anisotropic
beams (Chapter 6). Our preliminary results show the importance of including both
the in-plane and out-of-plane warping functions for determining accurate stress
“information and coupled displacement behavior (i.e. static deformed shapes and
mode shapes). |

3) The development of an analytical model for assessing the extension-bend-twist

coupling behavior of nonhomogeneous anisotropic beams with initial twist (Chapter

7). A model was formulated, where the displacement solutions are defined with

pretwist- dependent functions that represent the extension, bending and torsion and

pretwist-dependent in-plane and out-of-plane cross-section warping functions.

Numerical results illustrate the strong extension-torsion coupling behavior in thin-

wall advanced- composne beams as a functlon of ply angle, lnmal twast Ievel and
initial twist axis Iooatlon

"

“In the remaining six chapters of this report, the three different research areas and
associated sub-research areas are covered independently including separate
introductions, theoretical developments numerical results, and references._ This was

done because, first, each of the six topics are very independent in their focu? and scope
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~and, second, each of the six chapters is a copy of an extended manuscript of an accepted
and/or published Journal or Conference article. For example, the work of Chapter 2 has
been published as a conference article [4] and has been extended and accepted to the
AIAA Journal [5]). The results of Chapter 3, which has been recently completed, has been
submitted to the |nternational Journal of Solids and Structures [6]. The work of Chapter 4

has been submitted for publication by The Journal of Composite Materials [7]. The

results of Chapter 5 have appeared in condensed form in a conference article [8] and will
appear in extended form in the Journal of Sound and Vibration [9]. The model of Chapter
6 is being published as a conference article [10] and will be submitted to a Journal when
additional numerical results are completed. Finally, the formulation of Chapter 7, was
presented in a conference research article [t1] and an 'AIAA Journal article [12]. Inall 9
articles, the valuable assistance of R.C. Lake and the financial support of the NASA-
Langley Research Center was acknowledged.
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Chapter 2: A Power Series Approach for Isotropic Beams with
Arbitrary Cross-Sections

Abstract

The behavior of a tip-loaded cantilever beam with an arbitrary cross-section is studied
using Saint-Venant's semi-inverse method along with a power series solution for the out-
of-plane flexure and torsion warping functions. For complex cross-sections, the

- calculated power series coefficients represent a "best-fit approximation” to the exact

warping function. The resulting warping functions are used to determine the cross-
section properties. A new linear relation is developed for locating the shear center,
where the twist rate is zero about the line of shear centers. Numerical results are

- presented to verify the approach and second provide section data on NACA four-series

airfoils not currently found in the literature.

Introduction

Closed-form solutions for Saint-Venant's flexure and torsion problems (tip-loaded
cantilever beam) exist for only a few simple cross-section shapes (ellipse, rectangle,
equilateral triangle) [1-3]. For general cross-section shapes (i.e., cambered airfoils), the
cross-section dependent flexure and torsion warping functions cannot be determined
exactly and thus approximate techniques must be used. One proven approach for
approximately determining the Saint-Venant torsion [4] and flexure [5] functions involves
the application of the finite element method. In this approach, the general cross-section
is discretized into triangular and/or quadrilateral subregions (elements) with out-of-plane
nodal variables that represent the cross-section warping, where the warping distribution
is determined by applying the principle of minimum potential energy. While the finite
element approach is well behaved, it has two shortcomings. First a large number of
elements are required for complex cross-sections, which leads to a large set of linear
algebraic equations. Second, the resuiting array of calculated nodal values provides
very little physical insight into the warping definition and one typically resorts to graphical
finite element post-processing techniques to understand the warping distribution. An
alternative approach, which has been developed by Mindlin [6] for the solution of Saint-
Venant's torsion problem (generalized plane strain), involves assuming a double power
series for the warping function. The power series coefficients are determined by solving

a set of linear algebraic equations, where the number of equations is equal to the

number of unknown coefficients. Thus, the problem size is independent of the cross-

2.1



section complexity, and only dependent on the number of terms in the powaer series.

The objective of the current nnvesttgatlon isto study the flexure and torsion
behavior of a tip-loaded cantilever beam with an arbitrary cross-section, where both the
flexure and torsion warping functions are expressed as a double power series in terms of
the cross-section coordinates. The coefficients associated with the power series terms
are determined by solving a set of variationally derived linear algebraic equations, where
the number of equations is equal to the number of unknown coefficients. For complex
cross-sections, the calculated coefficients represent a "best-fit approximatidn" to the exact
warping function which may be an infinite series of transcendental functions. To aid in
the evaluation of the power series welghted area integrals, the cross-section is
discretized into a series of triangular subregions, where the integration in each subregion
is evaluated exactly using Guassian Qaudrature formulas for tnangles [7,8]. The triangle
aspect ratio is not critical as opposed to the finite element method, since the power series
is a global cross-section function and not a local element function.

Once the flexure and torsion warping functions are known for a given cross-
section and material definition (Poisson's ratio), then the resulting three-dimensional
displacement and stress distributions can be used to: (1.) study the overall beam =
behavior, (2.) determine important beam-type section properties including; the torsmn
constant, shear deformation coefficients, shear center location, and shear correction
factors (for Timoshenko's beam theory [9,10]), and (3.) develop a one- -dimensional beam
theory [11] that includes cross-section flexure and torsion warping effects and is fully
compatible with the three-dimensional stress and displacements predictions of Saint-

Venant.

The determination of the shear center location has been studied by numerous
researchers [2,3,5,12-15], where the shear center is commonly defined as "the load point
where the mean value of the local cross-section twist is zero (i.e., local twist rate about
the section centroid is zero)". Applying this definition to Saint-Venant's flexure and
torsion problems leads to a zero twist rate about the centroidal axis, but any other line
parallel to the centroidal axis, including the line of shear centers, will have a nonzero
twist rate. This nonzero twist rate for all lines except the centroidal axis occurs because
the application of a transverse tip load produces a linearly increasing bending stress
state normal to the cross-section and straining within the cross- -section. This straining
within the cross-section, which causes the particles of the cross- sectnon to translate and

rotate into an anticlastic surface, also increases linearly from the beam tip. Thus any line
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that is composed of cross-section particles that are offset from the centroidal axis will

- undergo Imearly varymg twnst (i.e. constant twist rate with zero twist at the beam-tlp) asa

result of an applied transverse tip loa_d. Recently, in [16,17], an analytical approach was
developed for locating the shear center in thin plate-like cross-sections, where the
aforementioned definition was modified to be "the load point where the twist rate about

"'the line of shear centers is zero". Although the two definitions appear to be very similar,

this definition insures that the shear center is coincident with the center of twist.
Moreover, numerical results for thin triangular cross-sections revealed profound
ditferences (40-67% depending upon Poisson ratio) In the shear center locations. In my
current paper, the shear center location is determined using both the classical definition

and the more recent definition [16,17], ‘where a linear relationship between the two

locations is developed that is valid for any cross-section shape and material definition.

Numerical results are presented to verify the approach and provide new data for NACA
four-series airfoils. The sensitivity of the section properties (especially the shear center
location) with airfoil thickness and camber is of interest to aeroelasticians because of the
profound effect these parameters have on divergence and flutter speed calculations. The
current work significantly improves upon the fundamental studies of the shear center
location for solid airfoils [15,18], where these analyses approximately treated cambered
airfoils as cubic ovals. '

Theoretical Background
General Beam Behavior

We begin by considering a cantilever prismatic beam of length L with an arbitrary
cross-section of area A composed of a homogeneous, isotropic material. A Cartesian
coordinate system (x, y,z) with correspondlng dusplacement components (u,v,w) is defined
with the origin at the centroud of the root end and the (x, y) axes coincide with the pnncnpal
axes of the root cross- -section. See Flg 1. The beam s subjected to a force with ﬂexure
components (Px, Py) that act througn the centroid of the tip cross-section (z=L) in the x-
and y-directions, respectively, and an applied torque (M;), where they satisfy the

following three equations of stress equilibrium;

Px = I szdA ' Py = J' Tysz , Mz = I (x‘l'yz'yfxz)dA . (1.3'0)
A A 5 A

2.3



Furthermore. the body forces are considered neghglble so that the in-plane stresses (oxx,
Oyy, Txy) are equal to zero and the normal stress is defined as a linear function, following
Saint-Venant's assumptions [1-3],

Oz = {f-!x+fly}(z L) ' (2)
ly Ix

where kx and Ay represent the principai moments of inertia about the x- and y-axes,

respectively. Introducing these assumptions into the stress equuhbrium equations and

integrating ytelds the well-known form [1-3] of the displacement components and shear
stresses :

L. 28 x{z 2k
U‘EAI;;{Z xyLz

Ly2.23 2. x2YL -
V= ElxeZ +¥{y y Z

ve el 2)- B2

GP
= -8x 2.x2) 4+
Tyz = (v Y g {Z(y X )} G

vx;(L z} Oyz + bsz-bey+ by (3.a)

f&{ vxfL- 2)) + 0x2 + bsz + bex+ bz (3.0)

+y(xy)- bg x- bsy+ba (3.0)

—\‘i + xe} (3.0)

(3.6)

'rxz=-§fl{¥( x2- y2)} —z{vxy}+6{ - y6

~where, E'is the Young's modulus of the material, v is the Poisson's ratio, G is the shear
modulus that satisfies ( = E/(2(1+v)) ), 8is the beam twist rate about the centroidal axis,
w(x y) isa function that descnbes warpmg out of the cross- -section plane, and by-bg are
mtegratnon constants that are specn" ied by defi ining the f|X|ty of the beam root. Inthe

__current development, the geometnc boundary conditions are prescnbed by restraining

the translational motion of the root centroid (x-y—z—O) and requmng 'that the slopé and
twist of the centroidal axis are zero at the beam root

u _ av au v . | |
=V=W= — ==-Z=0. 4.a
u=v=w 9z oz dy ox 0 (4.2
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This approach is identical to that of [2,3] and thus b =0 (i = 1-6).

The determination of the warping function (y) is accomplished by applying the
principle of minimum potential energy

8T = 8U- W, = 0 (5.a)

where (6U) is the variation of the strain energy given by
L
oU =L I 50'22622 + &yz}'yz + &xz}'xz dA dz ’ (Sb)
b .

since (oxx = oyy = 7y = 0), and W s the variation of the work of external forces that
results from the applied tractions on the beam ends;

o = [ (o iy 404 - % [ xovn o 22{ yaven. 6o

Substituting Egns. (2,3,5.b, 5.¢) into (5.a) and carrying out the integration over the beam-
length '

AL ) o .o P ol P ' \
S =0=GL 5;(8\//) {3\5 yé 757,}‘;{32"("2 yz)} Exli{vxy)j

+—45v) {—!K+xe vxy) Elf;(z(yz x2)>} (6)

P | xspaa-LLEL| yoyaa .
Ely ), i

An examination of Eq. (6) reveals that () can be expressed as a linear combination of‘
three cross-section dependent functions that are proportional to the rates of beam
curvature and twist '

2.5



vixy) = v«(x.y)g + Vz(xy)—!—+ vatxy)e 7) -

where (y1,y2) represent the s'hea”r'-"débehdent warping functions and (y3) is the Saint-
Venant torsion warping function.

The shear stress distributions of Egns. (3.d,6) can be expressed in terms of the
 rates of bending curvature and twist by making use of Eq. (7),

Py oo Pr . =

(8.a,b)
Txz = Txzy) EL}L + sz(g) —Z- +Txz 0
— where
d - d
Tyz1) = G{‘a%t' ."xy} ' oy =G ‘%c]"%(xz'yz)} ’
Tyzn = G a—WZ--Z(nyz} . Tz = Gl 22 v - VXy} , (8.¢c,h)
Y2(2) oy 2 Z(2) X ’
Tz = G2 4 x ez = GOV Y\
¥2(3) dy ' Z3) X
The twist rate (6) as a function of the applied loads (Px, Py, Mz) can now be
determined by substituting Eq. (8) into (1.¢), integrating and rearranging
| e
= P :
6 aakMz ay Eiyy 2Elxx (9.8)
where .
;= dA, i =1,3) . 9.b
g ], Xfy 0 VX (7 ) (9.5)
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The cross-section torsional rigidity (GJ) is commonly defined as the constant (as) in Eq.
(9.a). The remaining two constants (a,az) in Eq. (9.8) can be used to locate the classical
definition of the shear center (xs,ys); ‘the load point that produces a zero mean value

cross-section twist' (i.e., zero local twist about section centroid, 6 = 0) [2,3,5,12- -15). This
location can be determined by applying a general flexural force (Pxs, Pys) through the

unknown point (xs,ys), recognizing the equivalent centroidal forces and moments are
Px =Pm, Py =Pys, ' Mz= PysXs‘szys, (103‘0)

substituting these resultants into Eq. (9.a), rearranging, noting that (6 = 0), and then:

xg =22, ys =-3L (10.d,6)
Elg'

Although this definition leads to a zero twist rate about the line of centroids there will be a
nonzero twist rate about every other line parallel to the centroidal axis as a result of the
formation of the anticlastic surface. This is observed by calculating the micromolar twist
rate as

dwz _ 1|9%z 9%xz
5= (ax ay] vy} —L{vx} (11)

Applying a force (Pxs, Pys) through the above shear center definition will produce a zero
micromolar twist rate about the centroid axis (since x=y=8 =0), but a nonzero micromolar
twist rate (6s) about the calculated line of shear centers (xs,ys) that is equal to:

90z
0z

= O = -glyi{vys} —L—{sz] (12)

X-Xs
Yy=ys

This nonzero micromolar twist rate is illustrated in Fig. 2.a, where the deformed root (z=0)
and tip (z=L) cross-sections of the Ioaded (Pys) cantnlever beam are supenmposed

An alternate shear center location (xs",ys’) can also be determined so that the
application of an applied flexure force (Pxs, Pys) will produce a zero twist rate about the

calculated line of shear centers and insure that the shear center is coincident with the

2.7



center of twist. The current model has advantages over the procedure of [16,17] in that it

uses the Saint-Venant results directly and can be applied to any arbitrary cross-section,
not just thin cross-sections. This calculation involves finding the load point in the cross-
section plane that will produce a twist rate about the centroidal axis that is equal to the
negative of the anticlastically produced micromolar twist rate, thus '

e |\ Pys
0--93=-E’3Ily5}:{vys E’i{vxs.

where these twist rates offset each 6ther to produce a zero twist rate about the line of
shear centers. See Fig. 2.b. Substituting Eqns. (13) and (10.a-c) into (9.a), one can
determine this shear center location as:

(13)

. = az * = - al
Xs (Elx + vGY)' Ys (Elyy + vGJ) (14.a.b)

or in terms of the previous (classical) definition by making use of Eq. (10.d,e) and (G/E =
1/2(1+v)): .

, =, y;-=1 "S_J_ (14.c,0)
+(1+V)2(xx 7 ( 2

and the percent difference between the two locations can be expressed as:

Xs-Xs __y __J Vs Vs _ vy __J (14.e,h
X (14 V) 20" ¥e (1+v)2l,"

It is interesting to note that (xs',ys') will always be less than or equal to (xs,ys), where the
two locations are equal when either the Poisson's ratio is zero, the shear center is
coincident with the centroid (az=a3=0), or the cross- -section is very thick so that (J/ix) or
(Jkyy) is effectively zero. For most thin solid cross-sections (including NACA airfoils or

Atnangles) J/Ixx = 4, and thus the percent difference when measured from the centroid will
generally vary from 40% to 67% dependlng upon the Poisson ratio (assuming
0.25<v<0.50), which is agreement with the work of [16,17].
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Shear Deformation

An examination of the displacement components of Eq. (3.a-c) reveals that the
calculated centroidal tip displacements ( u(x=y=0,z=L) = PxL3/3Eky, Vx=y=0,2=L) =
P,L3/3Elxx) agree with the strength of materials solution, but the additional displacement
associated with shear deformation does not appear as a result of our original assumption
(Eq. 4.a-f) that the slope of the deformed centroidal axis at the beam root is zero
(bs,bs=0). This additional displacement can be included by simply rotating the deformed
beam so that the slope of the deformed cross-section at the centroid (x.y..O) Is coincident
with the x-y plane, and thus the deformed centroidal axis will have a nonzero slope (see
[3] for additional details). The rotation angles are equal to the shear strains (%z.%z) at
the centroid of the beam root (x=y=2z=0) and thus by combining Eqns. (3,7,9.a,10) the
shear angles defined in terms of the applied forces (Px,Py,M;) are:

PO - Ely dva| |Px .| 32| _ , Elw 2va| | Py , dva| M;
B4 = Yz %E‘{ MY, 'a‘?‘ Ely Ja%:zl GJ Ei{ b T ox| GJ
" ' Xeyu0) X )

X=y=0 X=ip=() X=y=0
| " (15.a)
SR ;uq% ;u{)#
GJ ody| |Ely ay GJ oy he Oy GJ
X=y=0) X= ) Xmy=0 X=y=0 X y0)
' (15.b)

where the subscript (0) is introduced to symbolize the evaluation of the function at the
centroid (x=y=0). The final form of the displacement components including shear
deformation (from Eq. (3.a-c)) is:

PxllLy2.28
U= E’yylz..z A %{xa kaL z) —L{VX)(L z} Oyz + byz (16.a)

V= LZZ 1{y2 x2kL z} -E—K—{VX}{L z))+9xz+ bsz (16.b)

Elxx\2
o Pelir.22 P,{ .22 - by x- '
W= E’;y-{){Lz 2” _E_lex{ Lz 5 +yixy)-bsx-bsy (16.0)
2.9



where w, 6, bs, and bs are defined in Eqns. (7), (9.a), (15.8), and (15.b), respectively.

A fully compatible one-dimensional beam theory can be developed using the
following kinematic relations

uxy.2) = U2) - y&(2) + wdx ), 7
vxy.2) = Vi) + x6(2) + wylxsh (17.a-0)
wixy.2) = W(2) - xP2) + yud2) + vAxy),

where (U, V, W) are z-dependent displacement functions that act along the x,y, and z
directions, respectively, (&x,Py,8), are z-dependent rotations about the x,y, and z axes,
respectively, and (yx, Wy, yz) represent cross- -section dependent "residual” (or warping)
displacements of the beam. The in-plane functions (wx, yy) which are associated with
formation of the anticlastic surface, can be neglected by assuming (oxx=0yy=mxy=0) and
thus using a one-dimensional constitutive model:

0 = Ecoy = E{aw 39y yaa>}

0z 0z 0z
08 dV )
Tyz= Gz =G xT*a—z”D"*_a%g} S (187.a-c)

Txz = GYXZ =G yae-l—au +_‘L}

0Z 0z ox

If one assumes that (U,V,W) and (&, @y,6) represent the displacements and
rotations about the centroid [9], then the commesponding definition of the one-dimensional
out-of-plane warping function (from Eq. (16.c))is ~ :

= y(x)y)- bax-bsy . , (19)
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where () is given in Eg. (7).

Alternatively, based upon the work of [10], one can assume that (U, V,W) and
(Px, Py) are the mean displacements and the mean rotations of the cross-section

-U,V,Wslj (u v, W dA, dbx-—l-ijdA. d>y=-J-J xwdA, (20.a-6)
Ala L. wa

and the correct form of the out-of-plane warping is obtained by substituting Eq. (16.c) into
(20.a-e) and then into (17.¢):

vz ""'Ty—I ywdA-,iI X y dA -%J ydA, (20.9
XXJA A A

i44
where (y) is given in Eq. (7).

The development of the equations of motion and the corresponding boundary
conditions using the kinematic relations of Eqns. (17.a-c) can be determined using
Hamilton's principle, where the bending and torsion related section constants are
dependent upon the one-dimensional out-of-plane warping function (yz). The complete
details of this refined model can be found in the second part of this paper [11].

Finally, a set of linear equations can be developed that relates the kinematic
description of shear strain and twist rate to the shear (Px,Py) and torsion (M;) resultants,
which can be used to (1) transform the warping function definition (Eq. (7)) to a
kinematically scaled function, and (2) provide valuable one-dimensional cross-section
constants. Substituting Eqns. (18.b,¢) into Eqns (1.a-c) and carrying out the integration
over the cross-section results in

(U 4, |

5 - Py
Riy Rz 0 || Px S11 0 Sy3 oz
Ry Rz 0 |\ Py 1 =| 0 S22 S23 * %{'*‘bx } ' (21)
R4 Ryp 1 M; 0 0 S3;3 26

| 7
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where the coefficients (Rjj) and (S are defined in the Appendix. Multiplying Eq. (21) by
the inverse of [A] results in the following set of linear equations

(au_, |

'a_z" 14
PX GAk11 GAk~|2 -GAyk13 3V
Py | =| GAkiz GAkp GAXKp || 57+®x | - (22)
Mz -GAV ki3 GAXky3  GJ 26

\ 3z )

where (k11, k12, ko2) are the shear correction coefficients needed for Timoshenko's beam
theory [9] and (k¢3, k23) are the shear correction coefficients for coupling between flexure
and torsion. This approach for flexure-torsion behavior is an extension of the method
developed in [10] for uncoupled bending only.

Solution Procedure

The warping function (y) of Eq. (7), which is dependent upon both the cross-
section shape as well as the material properties, can be determined by solving a set of
variationally derived algebraic equations based upon the principle of minimum potential
energy. In this development the warping function is defined as a power series:

vxh= % Y ConXMym - coo, (23)

m=0 n=0

where ¢mn are the unknown coefficients and the rigid bbcfj;_iréhslation coefficient (560) is
not Included since it was accounted for in Eq. (3.c) by (b3). lIf one assumes a finite series,
" then the above equation can be written in matrix form as

v(xy) = [Mxy]{c) (24)

“where [N(x)] is an array of the power terms, {c} is an array of unknown coefficients, and
“the array sizes are dependent upon the selected polynomial order. For example, if a
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cubic polynomial was selected, then based upon Pascal's triangle there are nine terms,
and the above arrays have the form:

[N(x.y)]={ X, y. 2 xy, y2 R xy, w2, y3}.
' (25.a,b)

T | V
(C} ={C10. Co1+ C20, C11+ Co2. €30+ €21+ C12. Co3 | -
)

A set of linear algebraic equations for determining the coefficients {c} can be obtained by
substituting Eq. (24), into Eq. (6) and taking the variation with respect to the unknown
coefficients (8w = [N(x.y)1{5¢c}): '

[]ie) = 1Fu-Fta). (26.2)

where the sfiﬁneés matrix is definéd ras,‘ ‘
[K = GL I D iNeyi] M) + 2N Ny dA  (26.b)
, OX Y ax gyt U gyt

the force matrices are presented as

[Fa] = EL[ L x[N]T dA, j

y[N]TdA, © } (26.c)
A

[Fd = 6L [—y[N(xy)] —JN(xy)] SO s ) PR
%(xZ-yZ) -vXy -y
A :
and
(a7 - {E%;'%' o} . (26.6)

The coefficients {c (1)} associated with the unit warping function (y1) in Eq. (7) are

- determined by setting {GQ}T = {1,0,0}. Similarly, the coefficients {c (2)} for (y2) and {c ()}

2.13



for (w3) are determined by performing analyses with {O}TV {0,1,0} and {Q}T = {0,0,1},
respectively. Thus, the complete warping function distribution for the three cases can be
written matrix form as;

(w1, v vs ) = (M )| c).{c). {o9) . @7

A computer program was wrlttgq Avgtleremﬁrst the boundary of a generalicross-
section is defined using (n) coordinate points with (n) straight line  segments co cting
the points. Second, the cross-section is discretized into (n) triangular subreglons, where
one edge of a triangle is a boundary line segment and the other two edges connect the
end-points of a boundary line segment with the user-defined cross-section origin. Thus
all of the subregions have one corner that is defined at the origin. See Fig. 3.b for an
example of a rectangle defined using four triangular subregions. Third, the cross-section
centroid and principal axes are calculated and then the cross-section coordinates and
applied forces are transformed to the cross-section principal axes. Fourth, the area
integrals (Eqns. 26.b-d) for each triangle subregion are evaluated using exact Gaussian
‘Quadrature formulas [8], where the cross-section power series polynomial can be user-
defined. Fifth, the complete cross-section stiffness and force matrices are formed by
simply adding together (not finite element type assembling) all of the triangular subregion
matrices. Sixth, the coefficients for each of the three cases of {Q} are determined.
Seventh, the calculated coefficients along with the power series polynomial definition are
used to determine the shear stress distribution and the cross-section properties (shear
center location, torsion constant, shear correction factors, etc.). Finally the calculated

values are transformed from the cross-section principal axes back to the user defined

coordinate system

This approach strongly differs from previous finite element based approaches [4,5]
in that the global matrix size is defined by the assumed polynomial order and not the
complexity of the cross~sect|on Moreover, cross -section cavities can be easily treated by
sumply subtracting off the tnangular subreglons that define the cavity. The aspect ratio of

- a tnangle subreguon is not critical, since the power series is a global cross-section
function and not a local subreglon function (i.e., finite element method).
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Prismatic cantilever beams with three different cross-section types are studied to
first verify the current approach (ellipse, rectangle), Fig. 3, and second illustrate important
results not found in the literature (NACA 4-digit airfoils), Fig. 4. The beam material
properties are defined as (E=1.0, v=0.333).

Ellipse

Initially the current approach was verified by studying the behavior of cantilever
beams with elliptical cross-sections having a wide range of aspect ratios (0.01<b/a<100),
where (a) and (b) are the semi-axes length in the x and y directions, respectively. See
Flgure 3.a. Each ellnptlcal cross-section was discretized using 90 points on the cross-
section (i.e. 90 triangular subregions) and the warping functions were defined using a
cubic polynomial (9 unknown coefficients) with a corresponding exact Gaussian
Quadrature formula [8]. In Fig. 5, the variation of the nonzero nondimensionalized
coefficients for an applied bending curvature rate (Pyx/Ely) and twist rate (6) are
presented as a function of aspect ratio (b/a), where the circles are the current calculated
power series solution and the bold solid lines are the exact solution from [2]. The flexure
solution in the x direction is composed of only three nonzero terms (yq = C10X + C12Xy2 +
c30x3), where the remaining 6 calculated coefficients are equal to zero. The ¢ygtermis
proportional to the shear strain at the beam root (%z(o)) and thus is used as a measure of
shear deformation in the x-direction (by), from Eq. (15.a):

cip . 13w| _ BaaFly | baly (28.2)
a2 a2 3X| a2Py a2pPy
X= 0

Applying a force in the y-direction (Py), would produce only three nonzero coefficients;
co1. C21, and cg3, where again the remaining 6 coefficients are equal to zero. The

- coefficient coq is proportional to (%z(0)) and represents a measure of shear deformation

in the y-direction (bs):

c1 _ 192 _ WEaflx | bsEly (28.b)
b2 b2 O b2P,  b2Py
X=y=0
2.15



The twist rate dependent warping function is composed of only the bi-linear term (y; =
c11xy) where the remaining 8 coefficients are equal to zero and c41 goes to zero as the
cross-section becomes a circle (b/a=1). The torsion constant (GJ=ag) was calculated for
each aspect ratio and was found to be in exact agreement (»dentrcal to 8 decimal places)
wrth the closed-form solution of [2]:

GJ = G r-a3b%

(29)
82 + b?

whnch was expecte d smce the current torsron warpmg functlon is in agreement wrth the
published solutions. The shear center was calculated and found to be coincident with
the centroid for all aspect ratios (xs"=xs=0, ys*=ys=0). Finally, the shear ¢ correction factors
(k11.k22) were calculated and compared to the results of Cowper [10] (see Table 1). The
current predictions are in near exact agreement over a broad range of aspect ratios,
whera it is mterestmg to note that for a force acting through a very thin ellipse (for
example Py with b/azO) the shear correction factor approaches zero while a force acting

through a thick ellipse (Px with ' b/a=0) the shear correction factor approaches 0.917184.
Bectangle

The behavior of cantilever beams having rectangular cross- -sections was also -
studied in order to further validate the current approach. A wide range of aspect ratios
(0.01<b/a<100) were investigated, where each cross-section was discretized using the
four corner points (four triangular subregiorws). See Fig. 3.b. From [2], the exact solution
of the x-dependent bending curvature rate warping function (y1) is defined as:

%(g]z -(1 +v)}x- %}xy2 + 16-{2+v

3 3 had (_1K Sinh(nﬂE)
T & s cosh(nd) cos(my) . (30)

yy = a2

ln order to compare'—the current power series predrctlons wrth the above infi mte series of
transcendental functions, a Taylor series expansion was performed on Eq. (30) and the
first three nonzero terms were found to be:

Vi = az{g{g)z -(1+v) + 4Vs(-2>}x'§{1 +45()

2.16
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n=1 cosr{n b)

The torsion rate warping function (y3) is also described by an infinite transcendental
series [2], but as (b/a) approaches either zero or infinity the series reduces to simply
(wa=C11xy) with c11=-1 or cq1=1, respectively. Moreover, the torsion warping function for
a square cross-section (b/a—1) can be expressed using a Taylor series expansion as:

s s o )
omnefi o 6)

The calculated torsion rate warping function (ys) is used to determine the torsion rigidity

(32)

GJ = a3 = Gkt (2a)*(2b) (33)
where (ki) is the torsion constant.

Two cross-section aspect ratios (b/a = 1, 100) were initially studied to assess the
convergence of the calculated coefficients and the warping-dependent cross-section
constants as a function of the polynomial order for the warping function. In Tables 2 and
3, the first three nonzero flexure coefficients, the first torsion coefficient, the shear
correction factor, and the torsion constant are presented as a function of power series
order and solution matrix size. In addition, reference values for the calculated values are
presented, where the three flexure coefficients are determined using Eq. (31), the torsion
coefficient is taken from Eq. (32), the shear correction factor (k11) is taken from [10], and
the torsion constant (k) is taken from [2,3]. From these tables, it is obvious that the
integrated cross-section constants converge to the reference values much quicker than
the actual power series coefficients. This occurs because the calculated coefficients
represent a "best-fit" of the user-defined polynomsal to the transcendental series, and

‘- changing the order of the polynomial will change the magnitude of the calculated
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coefficients, but it will have virtually no effect on the integrals of these functions. Thus, if
one is only interested in warping related cross-section constants, then a low-order power
series polynomial can be used, but if one is interested in the details of the warping
function, then a much higher-order polynomial is required.

In Fig. 6, the first three nonzero nondimensionalized power series flexure
coefficients (symbols) are presented along with the Taylor series representation of Eq.
(30) given by the bold solid lines. The power series solution produces near exact
agreement over a broad range of aspect ratios (0.01<b/a<100), where a ninth-order
polynomial (54 unknowns) was used for the warping function. As (b/a) approaches 100
(transversely loaded plate-type cross-sectnon) the power series predictions deviate from
the Taylor series representation. This can be traced to the fact that the infinite
transcendental series in Eq. (30) converges slowly for large (b/a) ‘and the selected ninth-
order polynomial can not accurately represent this behavior. Thus, one would need to go
to an even higher-order polynomial for this severe aspect ratio. The shear center (xs,ys)
and shear correction factors (k11, k22) were calculated for the entire range of aspect
ratios and it was found that the shear center was always located at the centroid and the
shear correction factors were always equal to 0.85105, which is in exact agreement with
[10] using v = 0.333. The calculated torsion constant (k) is presented in Table 4 as a
function of aspect ratio, where the current results are in near perfect agreement with [2].

NACA 4-Digit Airfoil

The final set of beam cross-sections that were investigated included six NACA 4-digit
airfoils of different thickness (NACA 0006, 0012, 0018) and camber (NACA 2512, 4512,
6512). The numbering system for these alrfons is based upon section geometry [19],
where the first dlglt indicates the maximum value of the mean-line ordinate in percent of
chord (c), the second digit indicates the distance from the leading edge to the maximum
camber Iocatlon in tenths of chord, and the last two dnguts indicate the maximum th|ckness
" (tmax) in percent of chord. Two of the studied airfoils, NACA-0012 and NACA-4512, are
presented in Fig. 4, where a second coordinate system (X,y) is introduced with the origin
taken as the leading edge. Each airfoil was discretized using 85 points on the cross-
section boundary (i.e. 95 triangular subregions), the warping functions were modeled
using a 9th order power series polynomial (54 unknown coefficients), and the numerical

integration was performed exactly using a 52-point Gaussian Qaudrature formula [8].
The calculated section properties for the six airfoils are presented in Table 5. The
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first five parameters represent the chord normalized geometric section constants and the
sixth parameter (B) is the rotation angle from (x,y) to the principal axes (x,y) with counter
clockwise defined as positive. The remaining nine parameters represent the torsion- and
flexure-dependent values. The torsion coefficient (k), which is nearly independent of
airfoil thickness and camber, is found using the calculated torsion constant (GJ)

GJ = a3 = G ki (tmax)c - (34)

The chord normalized flexure dependent coefficients (c10, co1) are also presented and
are used to provide a measure of chord-wise and thickness-wise shear deformation (see
Eqgns. 28.a,b). From the coefficient (c1o), it is readily apparent that the application of a
force in the chordwise direction (Px) will produce nearly constant shear-deformation
regardless of airfoil thickness or camber. Whereas the shear deformation associated
with a thickness-wise force (Py) is highly dependent upon the airfoil thickness but only
slightly dependent upon camber. The shear center locations are also presented for the
two definitions using the second coordinate system (5{%. Both definitions locate the
shear center ahead of the centroid, where the difference between the two definitions is
nearly 50% (measured from the centroid with v=0.333) in the x-direction and a minimal

-amount in the y-direction (cambered airfoils). It is interesting to note that the shear center

moves rearward (closer to the centroid) by either increasing the thickness or camber.
The difference that these two shear center locations have on the torsional divergence
speed of a straight uniform aircraft wing can be studied using (from [20]):

U = -2EI:V ceadpl2) ' . 33)

where (p) is the air density, (ao) is the lift curve slope, and (e) is the distance from the

elastic axis (hne of shear centers) 10 the quarter-chord ‘The ratio of the divergence speed

" (Up") using the corrected shear center location (aligned with the center of twist) based

upon [16,17] to the divergence speed (Up) using the classical definition [12], while
holding everything else constant, is equal to:

| U _ /=
o 1/9., (36)

where the results for the six different airfoil sections are given in Table 5. Thus itis
apparent that the new (corrected) shear center location will predict divergence speeds
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that are sigmfucanﬂy lower (6-12%) than those using the classic shear center defmmon
and this reduction is Iarger for thin airfoils with little or no camber.

Lastly, the shear corraction factors (ki1,k22) are presented. Increasing the airfoil
thickness will produce a minor decrease in (k11) but increase (kz2) significantly. This
observation is in close agreement with the thin elliptical cross-section results (Table 1,
0.01<b/a<0.20). Introducing camber will significantly reduce both shear correction
factors (k11,k22).

Conclusions
The flexure-torsion behavior of a tip-loaded cantilever beam with an arbitrary cross-
section is studied using Saint-Venant's semi-inverse method along with a power series
solution for the out-of-plane flexure and torsion warping functions. The power series -
coefficients are determined by solving a set of variationally derived linear algebraic
equations. For complex cross-sections, the calculated coefficients represent a "best-fit
approximation” to the exact warping function. A new linear relation is developed for
locating the shear center using the Saint-Venant flexure and torsion solutions, where the
twist rate is zero about the line of shear centers (not the centroidal axis). In addition the
kinematic relations for a fully compatible one-dimensional beam theory are presented,
where the calculated current flexure and torsion warping functions are fully integrated
into the development (see part Il [11]). Numerical results are presented for three different
cross-sections (ellipse, rectangle, NACA four-digit airfoils). For elliptical cross-sections, it
was shown that the calculated coefficients, as well as all of the section properties, were in
exact agreement with existing e!astlcuty solutions. For the rectangular cross-section, it
was shown that the calculated power series coefficients represent a "best-fit" to the
transcendental functions and a low-order polynomial can be used if only warping-related
section properties are desared whereas a htgher-order polynomual is réquwed if the
warping function is to be studied in detail. Fmally for NACA four—dlglt aurfonls the shear
deformation and shear correction factor associated with a thickness-wise force (Py) is
highly dependent upon the airfoil thickness but only slightly dependent upon camber.
The x-direction shear center location is ahead of the centroid with the difference in the
two definitions being nearly 50% (for v=0.333) when measured from the airfoil centroid,
and increasing either the airfoil thickness or the camber will move the shear center closer
to the centroid. These dsfferences correspond to a 6-12% decrease in the divergence
speed for the corrected shear center definition versus the classic definition.
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S11 = S22 = GA,
Si3 = GJ (g—gf'--y)dA, Sr3 = GJ (ia‘l!@wx]dA,
A A
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.
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r
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Table 1: Shear correction factors for elliptical cross-sections (v=0.333).

bla k11 k11 (11] k2
0.01 0.917181 0.917181 0.004777
0.10 0.916854 0.916854 0.309770
0.20 0.915869 0.915869 0.602246
0.50 0.909272 0.909272 0.829613
1.00 0.888864 0.888864 0.888864
2.00 0.829613 10.829613 0.909272
5.00 0.602246 © 0.602246 0.915869
10.0 0.309770 0.309970 0.916854
20.0 0.105567 0.105567 0.917102
100.0 0.004777 0.004777 0.917181
224
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Table 2: Calculated nonzero flexure and torsion power series coefficients, shear correction factor, and

torsion constant for a square cross-section (b/a=1.00) with (v=0.333).

Polynomial Matrix Flexure - x direction Torsion
~_Order Size c1o/@ 030 c12 k11 031 (-¢43) Kt
2 5 0.8887 - - 1.000 - 0.167
4 14 1.2405 -0.3888 0.1110 0.85105 1.556 0.141
6 27 1.2324 -0.3615 0.1018 0.85105 1.250 0.141
8 44 1.2340 -0.3690 0.1108 0.85105 1.574 0.141
Reference 1.2340 -0.3705 0.1114 0.85105 1.574 0.141
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Table 3: Calculated nonzero flexure andrtorrsian power seﬂeé coéﬁidehfs. shear w&ecﬁon factor, and
torsion constant for a thin rectangular cross-section (b/a=100) with (w=0.333).

Poljnomial Matrix Flexure - x direction ,
Order Size cyo/a2 030 012 ki o141 Ky

2 5 -554.0 - - 1.000 1.00 0.333
4 14 0.7783 -0.3888 -0.1663 0.85105 1.00 0.333
6 27 1.2483 -0.1118 -0.1670 0.85105 1.00 0.333
8 44 | 1.1130 -0.2334 -0.1514 0.85105 1.00 0.333

Reference 0.9943 -0.2873 -0.1382 0.85105 1.00 0.333
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Table 4: Torsion coefficients (ki) for rectangular cross-sections ('v-0.333).w )

bla ke k {2
1.00 0.14058 0.141
1.20 0.16613 0.166
1.50 0.19578 0.196
2.00 0.22871 0.229
2.50 0.24940 0.249
3.00 0.26336 0.263
4.00 0.28086 0.281
5.00 0.29137 0.291
10.00 0.31297 0.312
v 0.33333 0.333
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Téble 5: Section properties of NACA four-digit airfoils (v=0.333).

NACA- NACA- NACA- NACA- NACA- NACA-
0006 0012 0018 2512 4512 6512 —
-
centroid
Y 0.42067  0.42067  0.42067  0.42061  0.42039  0.42008 B
yic: | 0.00000  0.00000  0.00000  0.01520  0.03037  0.04550
A2 0.04106  0.08213  0.12319  0.08219  0.08238  0.08270 |
hodc? (10°5) 0.84944  6.79550  22.9350  6.97050  7.49940  8.39180
lyylc? (10-3) 2.26500  4.52990 679490  4.53690  4.55840  4.59370 -
(degrees) 0.00000  0.00000  0.00000  0.41351  0.82850  1.24740 5
kt 0.15642  0.15386  0.14986  0.15396  0.15427  0.15479 %
c1o/c2 (10°1) 1.89102  1.89302  1.89633  1.89609  1.90553  1.92117
co1/c2 (10-4) 8.15829  32.5047  73.1685  32.5100  32.2590  31.814f 3
xg/c: 0.33935  0.34093  0.34350  0.34399  0.35233  0.36402 =
Ys/c: 0.00000  0.00000  0.00000  0.02183  0.04378  0.06595 L
¥s'lc: '0.36634  0.36711  0.36838  0.36871  0.37319  0.37985 =
Vstlc: 0.00000  0.00000  0.00000  0.02196  0.04398  0.06614
K11 0.91545  0.91462  0.91323  0.90181  0.86340  0.80324 %
ka2 0.07740  0.24212  0.40041  0.22576  0.19355  0.16671
Up*MJp 0.87640  0.88120  0.89350  0.89100  0.91140  0.93710 i
i
5
Ll
i
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1.)

Prismatic cantilever beam.
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4—— oot (z=0)

2.) Tip (—) and root (==) cross-section planforms of a tip-loaded (Pys) cantilever
beam with an airfoil cross-section where (a.) zero twist about the centroidal axis
and (b.) zero twist rate about the calculated line of shear centers.
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3.) Elliptical and rectangular cross-sections with aspect ratio (b/a). The rectangular
cross-section reveals the four triangular subregions.
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4)  (a) NACA-0012 airfoil, and (b) NACA-4512 airfoil.
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5) Comparison of caiculated flexure and twist power series coefficients with the exact
results of [2] for an elliptical cross-section.
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6.) Companson of ther first-three nonzero calculated ﬂexure power series coefficients
with the Taylor senes expansnon of the results from [2] (=) for a rectangular

cross-section.
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Chapter 3: A Power Series Approach for Generally Anisotropic
Beams Arbitrary Cross-Sections

Abstract

The behavior of a tip-loaded anisotropic cantilever beam with an arbitrary cross-section
is studied using Saint-Venant's semi-inverse method along with a power series solution
for the local in-plane and out-of-plane deformation warping functions. The power series
coefficients are determined by solving a set of variationally derived linear algebraic

‘equations. Using the resulting three-dimensional displacement solutions, the shear

deformation associated with applied tip loads is investigated as well as the shear center
location. Both of the extended definitions reveal the linear dependency of the shear
center location with beam-length. Numerical results are presented for three different
cross-sections (ellipse, triangle, NACA-0012 airfoil ) and two different materials (Al 6061-
T6, off-angle high-strength graphite/epoxy fibers).

Introduction

Closed-form solutions for Saint-Venant's problems (tip-loaded cantilever beam)
exist for only a few simple isotropic homogeneous cross-section shapes (ellipse,
rectangle, equilateral triangle) (Sokolnikoff, 1956) and one anisotropic homogeneous
cross-section (ellipse) (le and Kosmatka, 1992). For general cross-section shapes, the
local deformation functions of the cross-section cannot be determined exactly and thus
approximate techniques must be used. One proven approach for approximately
determining these local deformations in isotropic cross-sections (Herrmann, 1965;

~ Mason and Herrmann, 1968) and anisotropic cross-sections (Kosmatka and Dong

(1991)) involves the application of the finite element method. In this approach, the
general anisotropic cross-section is discretized into triangular and/or quadrilateral
subregions (elements) with in-plane and out-of-plane nodal variables that represent the
local in-plane deformations and out-of-plane warping. But the finite element method
requires a large number of elements for complex cross-sections, which will lead to a
large set of linear algebraic equations (thousands of unknowns). Moreover, the
calculated array of nodal deformations provides little insight into the deformation and
warping distribution over the cross-section and thus one must resort to graphical finite
element post-processing techniques to understand this distribution. An alternative
approach, which has been used by Mindlin (1975) for the solution of Saint-Venant's
isotropic torsion problem and by Kosmatka (1992) for the isotropic flexure problem,
involves assuming a double power series for the each of the local in-plane deformations
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and the out-of-plane warping. The power series coefficients are determined by solving a
set of linear algebraic equations, where the number of equations is equal to the number
of unknown coefficients. Thus, the problem size is independent of the cross-section
complexity, and only dependent on the number of terms in the power series.

The objective of this paper is to develop a method for studying the behavior of tip-
loaded anisotropic beams with general cross-sections using Saint-Venant's semi-inverse
method, where the local deformations of the cross-section are expressed as a double
power series in terms of the cross-section coordinates. The coefficients associated with
the power series terms are determined by solving a set of variationally derived linear
algebraic equations, where the number of equations is equal to the number of unknown
coefficients. For complex cross- -sections, the calculated coefficients represent a "best-fit
approxnmatlon to the exact warping function which may be an infinite series of
transcendental functions. To aid in the evaluation of the power series weighted area
integrals, the cross-section is discretized into a series of triangular subregions, where the
integration in each subregion is evaluated exactly using Guassian Qaudrature formulas
for triangles (Dunavant, 1985). The triangle aspect ratio is not critical, as opposed to the
finite element method, since the power series is a global cross-section function and not a
local element function.

Numencal results are presented for three different cross- sectlons (elhpse tnangle
'NACA-0012) and two ditferent materials (Al 6061-T6, off-angle high-strength
graphite/epoxy fibers) to first validate the approach, second prove convergence of
warping related cross- -section parameters (torsion constant ‘shear center location, shear
deformation), third present important behavioral data not currently found in the literature
and fourth investigate the sensitivity of the shear center location with cross-section
shape, beam length, and material definition.

Theoretical Background

We begm by con31dermg a cantilevered pnsmatlc beam of length L with an
arb|trary cross- -section of area A composed of a homogeneous rectilinearly anisotropic
material. A rectan_gular Cartesian coordinate system (x,y,2) with corresponding
displacements (u,v,w) is established with the origin at rthecentroid of the root end and the
(x,y) axes coincide with the cross-section principal axes. See Fig. 1. The constitutive
,re,la'tions for the material are given by:
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(o) = 10¥e).
(e} = [S)o}. (1.a-¢)

where [C] and [S] are fully populated symmetric matrices with 21 distinct elements and
the stress and strain arrays are given as: '

{0'} = (O')éx » Oyy . Ozz s Tyz. Txz, Txy} ’
(1.de)

{€) = lexx . eyy s €224 Vyz o Wz Txy) -

~ At the root end, the beam is fully fixed. Within the framework of the Saint-Venant

problems, this condition cannot be described on a point-wise basis and the equivalent
statement at the centroid (x=y=z=0) can be used:

At the free end, tractions are applied which reduce to an equivalent force P and moment
M with respect to the cross-section centroid. The force P and moment Mcan be
decomposed into flexure components; Px and Py, an extensional component; Pz, bend-
ing moments; Mx and My, and a torsion moment; Mz. As a result of the applied tip loads,
five of the stresses are independent of z and the sixth stress (ozz) has flexure
components which vary linearly with z

Ozz = ’EKX+—PZy‘z+ a2,x,y) (3)
= |

where Ixxand lyy are the area moments of inertia about the x and y axes, respectively,
and 0%z is associated with extension, bending, and torsion. Introducing these
assumptions into the stress equilibrium equations and integrating yields the following
displacement and strain components (see Kosmatka, 1986; Kosmatka and Dong, 1991;
for further details): '
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My+—v—4‘Mz

> z2-Qyz

‘u = —(z 3L)- “AyAz-2L)+ v1x2-v2y2}(z-L) +
' Elyy

2Ely,

P v
_EEIXLX{(QWX + vy z- L) +—-25—yz(z- 2L)

+ yx(x.y)
(4.8)
- P 2 - -!5- - 2. Zk - }, 1 !5_ 2
v 2E/XX<Z§(Z 3L) 2"2(2 2L) +{vpy2 - vix2{z- L) 2ELL Mx+2MzZ + Oxz
st ) k-2 iy
(4.b)

E M XiM}
XZ+EIXX x+2 ziyZ

P | 1 {p1 4 va
w o= -ﬁéli’—y{{v;,x+ v4y)x(z-L)-xz(z-ZL)}-Ey—y{My+?Mz

P
- s=L{{vsx + vay Iz - L) - y4z - 2L)} - £ Yopy+ 24p,- Pz=z+ vz(x,y)

2EIxx 2 2
(4.¢)
and
PxV1 aVIX
= L)+
= "Ely "(_ L)- Elxxy(z )
p _ (4.09)
V: V: b
Ey = - é;4 )‘MMZQ+
(4.e)
fzz = 2EI BE, (V6% * vay+ AL- AP 5 —{vex s vay+ 2(L- D)y |
1 Vsprl, 1 _
+ Elxx {MX + 'és‘Mz}y Elyy My+ > sz 2EA {VSPX + V4Py 2PZ}
| - . (4.h
= vde- oo gt vt 2wt o
5 | B 5 (4.9)
Yaz = —E-;i ViX + 325-y+ vs(Z - L)y-2EIyy v1x2 v2y2 +2vsz - L) By + —5%5
(4.h)
34
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- coefficients defined as:

Elx aX
' (4.9)

where, A is the cross-section area, @ is the twist rate of the beam about the centroidal axis
(2), E (= 1/833) is commonly called Young's modulus, and v are cross-coupling

v =208 4,)
S33

Here v{ and v2, are the usual Poisson coefficients, and v4, v5, and v, express the
three-dimensional extension-shear coupling that can occur in a completely anisotropic
body. The remaining functions (yx, vy, yz) represent local cross-section (x,y) dependent
deformations and are unique for each cross-section shape and material configuration,
and are linearly proportional to the six applied loads and twist rate (see Kosmatka and
Dong, 1991)

7 .
(wx, ¥y.¥2) = z (Wx(/) Wy ) Yz Qi (4.K)
i=1

where @ are the components of
{O}T = {PX’ Py, PZv MX: Myl MZv 0’ . (4,)

In the current development, the "unit” local cross-section deformations (i Wy(i),
V(i) are assumed to have the form of a power series:

©0

V(@) = Z 2 amn () XTY"

m=0 n=0

?Ma
(e ]

Wi = > bmn@xmyn, (5.a-0)
n=0

Vo) = Y Cmnp Xmyn,
m=0 n=0

3.5



where (amn(i) bmn(i), Cmn(i)) are unknown coefficients that depend upon the cross-section
shape, material properties, and load-type ( Q ), and the subscripts (m) and (n)
correspond to the order of (x) and (y), respectively. The four rigid body motions of the
cross-section (three translations, rotation about the z-axis) for each of the seven cases -
are constrained by setting (aoo = boo = €00 = 0) and reqUiring that (ag1 = b1g). Assuming
that the series is finite, Eqns (4.k) and (5.a-c) are combined to form:

o} -l

(W}T'—' ( Vx:, Yy, Vz }.

where

(6.5,0)

N(x, 0 0
(H] = [ (o A [Nxy] 0 |-
0 0 [Mxy)]

and [¥] is comprised of seven columns of unknown coefficients that have the form:

(#0)" = {{%}T - {bm}r ' (%}T } o T=17 (6.9)

For example, if a cubic polynomiél was selected, then based upon Pascal's triangle,
[N(x,y)] has 10 terms:

and {a )}, {b (i)} and {c ()} for the jth column of [*Pj has the form:
T
{a(o} ={aoow’awm-am(o’azo(ovan(ovaozm-aao(l)’azur)rammsaoa(o}v
T ' |
(b(,)} = { boo () » b10(h » bo1 (3 » b20 () » D11 () » bo2() » B30 () + D21 W b12() o3y }.(7.b-0)

.
{Cm} ={600(0_-010(1)'00“0'020(0-011m'002(0'030(0-%1(0'012(:)-003(:)}'
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and the aforementioned three rigid body translations and one rigid body rotation are
constrained using standard finite procedures after the cross-section model is fully
assembled.

The strain arréy {€} of Eq. (1.€) can be obtained in terms of the matrix of unknown

coefficients [¥], the applied forces and moments, and the centroidal twist rate by
substituting Eq. (6.a) into Eqns. (4.d-i):

(el fm el e

where ~ i,
IVMxAl 5 5 o o dANxy)]
ox oy
oy ax
0 o o ANy AMxp]
i oy ox i

" and [F¢ ] is defined in the Appendix.

N The magnitude of the unknown coefficients in ['¥' ] can be determined by applying
the principle of minimum potential energy:

8 = 8U - 6We = 0 . (9.3)

where 8U is the variation of the strain energy;

L : |
U =I J (6)T[C] (e} dA az, (9.b)
0 JA

and 6Wg is the variation of the work of external forces that results from the applied
tractions on the beam ends;

8We = I (TXZSWX + Tyzguly +0'225WZ }l(sz)dA 'J’ {sz&/lx + Tyzav/y +0'226WZ }] (z=0) dA
A A
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, (9.0
which reduces to (Kosmatka and Dong, 1991):
Py PyL
6We = -—,L X 51//sz + ] y 6V’ZdA‘ (gd)
A XX

¥y

A

A set of linear algebraic eqUétions for determining the seven "unit” unknown
deformation coefficients is obtained by substituting (8.a), (9.b), and (9.d) into (9.a),
integrating over the beam volume, and taking the variation with respect to the unknown

~ coefficients: '
][] - [[Fw]-[pc]], o (0.
where
[K] = LI [B]T[C]B] cA (10.b)
A

0 0 0o 0 0 0 O
[Fw] =L 0 0 o o 0 o0 o | (100

-LJ x[N(xy)] dA J-I y[Nxy))dA 0 0 0 0 O

lyy A Ixx A .

and 7 |

Fe) = o toTcfFe]on (10.9
 (817[c]Fe] @

with [Fc] also being defined in the Appendix. The final form of the local cross-section
" deformations (Eq. (4.k) ) are determined by solving (Eq. (10.a) ) for [¥] and substituting
the results into Eq. (6.a). Similarly, the stress components (Eq. (1.d)) can be written in
terms of {Q}, using Eqns. (1.a) and (8.a), as;

(o}

[c)a). (12.8)
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" The centroidal twist rate 6 (Q7) can now bé determined in terms of the three
applied forces and moments by substituting the fourth (7yz) and fifth (7xz) rows of Eq.
(12.a) into the cross-section torsion moment equilibrium equation

My = j XTyz-y txz 0A (13.3)
A

 integrating, and rearranging to get:

0 = ayPx + 8Py + a3Pz + ayMx + asMy + agMz, (13.)

where _
a; = -2k, (k = 1-5) (13.¢)

az ‘ :

ag = 126 (13.)

7

and ,
3 = I {x(Cak) - y(T5k)} A (k=17) . (13.¢)
A

The (/) and (j) subscripts of gjj in Eq. (13.€) correspond to the row and column position in

o] (Eq. (12.b)). The coefficients ay-ag are all independent of the beam-length because
- from the original assumptions, the shear stress distribution is only a function of the cross-

section coordinates (x) and (y). Moreover, the torsion stifftness is commonly defined as:
GJ = 1/ag (see Kosmatka and Dong, 1991).

Lastly, the local deformations, the strain array, and the stress array can be

- expressed in terms of only the three applied forces and moments by combining Eq. (13.b)

with Egns. (6.a), (8.a), (11)and (12.a8):
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[THO'}' o (49

where _ _
i 0 0 0 0 ©
o 1 0 0 0 O
0 O 1 o o0 ©0
M= 0 o o 1 o o | (14.0)
o 0o o o0 1 O
0o o 0o o o 1
| 41 82 8 a4 4 4
and
AT '
{O } = {Px, Py, Pz, Mx, My, Mz} . (149)

Behavior of an Anisotropic Beam

The general behavior of a cantilever anisotropic beam having an arbitrary cross
section can now be studied using the displacement (4.a-c) and stress distributions (14.5)
along with the calculated twist rate (13.b) and the cross-section deformations (14.a). Ina
prevuous paper, (Kosmatka and Dong, 1991), a detailed discussion was presented
" covering the extension, bending, torsion, and flexure behavior of anisotropic cantilever
- prismatic beams based upon Saint-Venant solutions. In the current paper, we will focus
our discussions on two topics: shear deformation and further issues concerning the shear
center location. :

~ An examination of the transverse displacements (u,v), from Eqns. (4.a,b), reveals
that applying either a bending moment (Mx,My) or a flexure force (Px,Py) will produce
centroidal tip components (x=y=0, z=L) that agree with the standard (isotropic) strength of
material solutions
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Py L3  MyL®
3 E/,,y 2 Elyy’

3 2
Vixey=0,zL) = SXEZ MxL” (45 4 p)

(X..y-o Z—L) 3 Elxx 2 EIXX

-

and applying an extension force (Pz) will produce only an axial component (w). But the
transverse components associated with shear deformation are not included in Eqns. (4.a-
) because the fixed root boundary was defined by settmg the deformed centroidal axis
slope to zero (du/dz=0v/9z=0). These additional transverse components can be included
by simply rotating the deformed beam so that the slope of the deformed cross-section at
the centroid (x=y=0) is coincident with the x-y plane, and thus the deformed centroidal

. axis will have a nonzero slope at the origin. These rotation angles are equal to the shear

strains (%a %) at the centroid of the beam root and can be found evaluating the 4th and
5th equations of Eq. (14.b) at (x=y=2=0). For example the rotation angle, about the y-axis,
associated wnh shear deformatuon in the x-z plane is equal (from Eqns. (4.h), (5.¢), and
(14. a)) to:

dyz & . .
Tazg = Yxz| = F°| = Z [010(:) +8;C10 (7)|Qi - (16)
x=y=0 x=p=0 i=1 .

Similarly the rotation angle about the x-axus assocnated with shear deformatlon in the y-
z plane is equal to

YWz =

6 *
2 (001 () +4iCo1(7) )Oi : (17

Z—(z 3L)- J—yz(z 2L) + My+1iMz
2E/yy

2.
5 ¥4 Oyz

V4X2 - v2y2}(z L)

2E/yy

/ y ' ‘ Vv
- L)+ 22 -
5E) {2V1X + vsy}}(z L) YZ(Z 2L)

+ Yazp)Z + Yx(X.Y)

(18.a)
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. P 2 ) -_‘ii ) 0 2k ) e !-5- \
v 2E[xx:;§(z 3L) > x4z - 2L) +{vpy2 - vix2(z- L) PElL Mx + > Mz)z2 + Oxz
-__{29;}, (vsx + 2v2}'})(z- L)+ V2—4xz(z- 2L)} + ‘}'yz(o)z‘+ VAX.Y)
(18.5)
= _X_{P -1)- x4z - 2L))- Ya 1 Vs }
P .
_L2EI {{vex + V4y}}(z L)- yz(z 2L)) EL{ o+ _‘tpy P,\z
- Yazio)X - Yyzio) + vAX.y)
(18.c)

where 6, yx, Wy, ¥z, %z(o) and Wz(o) @re defined in Eqns. (13.b), (14.a), (16), and (17),
respectively.

Hr an'inin fhar'n'r

For prismatic cantilever beams that exhibit less than generally anisotropic
behavior (v4,vs=0), the shear center is a property of the cross-section and independent
of beam-length (line of shear centers is parallel to the centroidal axis). For this class of
materials, a classic definition has been presented for locating the shear center (Griffith
and Taylor, 1917) as 'the load point that produces a zero mean value cross- -section twist
rate (i.e., zero twist rate about the centroidal axis). Attempting to extend this definition to
a beam composed of a generally anisotropic material (vs4,vs#0) leads to a shear center
location that is a function of the cross-section shape material definition, and is linearly
dependent upon beam-length (Kosmatka and Dong, 1991). Thus, the line of shear
centers for a generally anisotropic beam is straight, but it is not parallel to the centroidal
axis.

We can study this phenomena by calculating the micromolar twist rate for a
particle in the beam:

0wz _ 1[9%z Oxz|_g ._Px , _ P
3z ‘( ax  dy =0 2Elyy{V5X+ 2vzy + v4(Z L)}+_LZEIXX{2V1X+ Vey + vs(z - L))

(19)
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where the (2) dependent terms are associated with anlsotroplc 'bend-twist' coupling as a

“result of applied flexure. The micromolar twist rate about the centroidal axis (x=y=0), to
be consistent with the work of (Griffith and Taylor, 1917), is:

a(oz V4 |
—< . Pxva -L 20

" Next, we apply a general tip flexural force (Pxs, Pys) through the unknown shear center

location (xs,ys), where the equivalent centroidal forces and moments are defined as

Px = Pxs, | Py=Pys, : M; = PysXs'szys. (21.3-0)

" Substituting Eqns. (21.a-¢) and (13.b) into Eq. (20) results in

a
az

= P - s 5z 1

" Py_{az + agxs + 2B (z- L) (22)
2E Iy

Since the micromolar twist rate (dw;/dz) varies linearly with (z) for a generally anisotropic

beam, it is not possible to locate the shear center so that the twist rate about the

centroidal axis is zero independent of beam axial position. Thus the Griffith and Taylor

definition can not be implemented if (V4,vs¢0) Instead, we recognize that since the twist

* rate varies Imearly with (2), then the micromolar twist (w;) will vary quadratically with (2).

Thus, the best that can be achieved is to "locate the shear center (xs,ys) so that there is
zero micromolar twist at the beam root (z=0) and zero twist in the cross-section plane that
contains the applied load (for a tip load, z=L)". This is accomplished by requiring that

B |
9% 4y = 0 . (23)
Jo 92

Substituting Eqg. (22) into Eq. (23), carrying out the integration and solving, produces the
shear center location for the beam tip cross- sect|on (z=L) that is independent of the
magnitude of the applied Ioads

\-—~

(24.a,b)

' val
XS(2=L) XSL = 36 2 -Z_ESIL] ’ YS(Z=L) ySL ‘ a1 + 4E’yy
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The shear center location at the root of a generally anisotropic beam (or a very short
anisotropic beam (L=0)) is equal to the classic Griffith/Taylor definition for an i'sotropic
cross-section (xso = -82/ag, Yso = a1/ag). The shear center location in the beam-tip cross-
section (Eq. (24.a,b)) is composed of two terms; one which is independent of the beam-
length (i.e. the classic Griffith/Taylor definition) and one which is linearly proportional to
the beam-length, the material properties (\)4,V5), and the ratio of the torsion stiffness to
the bending stiffness (1/(agElxx), 1/(asElyy)). This development and discussion is
consistent with the shear center location proposed by le and Kosmatka (1992) for a
generally anisotropic beam with an elliptical cross-section.

An alternate shear center definition has been proposed by Reissner (1989, 1991)
using thin-plate theory so that "the application of an applied flexure force will produce
zero twist about the calculated line of shear centers” and thus insure that the shear center
is coincident with the center of twist. Recently, Kosmatka (1992) applied this definition to
Saint-Venant's flexure and torsion problems and developed a linear relationship for
calculating this new shear center location in an isotropic beam with an arbitrary cross-

section:

Xo=-—22 L= (25.a,b)
+ Y ag + Y=
E’xx : Elyy

where the difference between this definition and the classic Griffith/Taylor definition for an
isotropic cross-section is an additional term in the denominator.

Now to apply this definition to a generally anisotropic beam with an arbitrary cross-
section, we again apply a general flexure force (Pxs, Pys) through an unknown shear
center location (xsL*, ysL*) in the tip (z=L) cross-section, where the equivalent centroidal
forces and moments are given in Eq. (21.a-c¢) and the micromolar twist rate about the
unknown shear center location is determined by substituting Eqné. (21.a-c) and (13.b)

into Eq. (19):

+Pydar + asx;,_ + 2v4 x;L + v5y'sL + vg(z- L)} .
2EIxx

0w y * o
_a_zz_ = Px{a1 - 8gYst - ngyy VgXg) + 2Vayg + va(z- L)
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Once again, the micromolar twist rate (dw,/0z) varies linearly with (z), and thus the best
that can be attained for an anisotropic beam is to locate the shear center so that the
micromolar twist (wz) is zero at the beam root (z=0) and beam tip (load plane, z=L) and
varies quadratically between the root and tip. Substituting Eq. (26) into Eq. (23) and
carrying out the integration over the beam-length, results in two coupled linear algebraic
équations that are used to solve for the new shear center location in the beam-tip cross-
section:

oy ove ) (et
%' Elw  2Elw || ¥t | | Y 3E, o
Ve Vo . sl |
2El,  ®VE, || Vst 2+ 7 h—

An examinatidn of the above equatidn reveals that: (1 ) this new shear center location for

.- anisotropic beams will identically reduce to the results of Eq (25) for isotropic materials

(va,vs,ve=0), (2) the form of the Iength dependency effects is identical to that of Eq. (24),

_.which was developed by extending the Griffith/Taylor definition for anisotropy, and (3.)

the presence of (ve) introduces coupling between the (x) and (y) locations. The coupling
associated with (vg) is unique in that it is not present in the extension of the Griffith/Taylor
definition (Eq. (24)) and furthermore, (vs) type material coupling can not be included by
studying plate-type theories, which make use of plane stress assumptions. Finally, the
shear center location (xso", ¥so') in the beam root cross-section is determined by solving
Eq. (27), where (L) is set to zero. An example of the two different 'line of shear centers'

~ definitions are presented in Fig. 2, where it is possible that the shear center in the tip

cross-section plane can be well outside of the cross-section planform.

““Computer Program

A computer program was written where, first, the boundary of a general cross-
section is defined using (n) coordinate points with (n) straight line segments connecting
the points. Second, the cross-section is discretized into (n) triangular subregions, where
one edge of a triangle is a boundary line segment and the other two edges connect the
end-points of a boundary line segment with the user-defined cross-section origin. Thus
all of the subregions have one corner that is defined at the origin. Third, the cross-
section centroid and principal axes are calculated and then the user-defined cross-
section coordinates are transformed to the cross-section principal axes. Next, the area
integrals (Eqns. 10.b-d) for each triangle subregion are evaluated using exact Gaussian
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Quadrature formulas (Dunavant, 1985), where the cross-section power series polynomial '

“can be user-defined. Fifth, the complete cross-section stiffness and force matrices are
formed by simply adding together (not finite element type assemblmg) all of the triangular
’subreglon matrices and the three rigid body translations and rigid body rotation are
constrained. Sixth, the coefficients for each of the seven cases of {Q} are determined.
Seventh, ‘the caleulated coefﬂdents along with the power senes ‘polynomial definition are
used to determine the shear stress distribution, the constants (a; (i=1-7)), the cross-
section properties (shear center location, torsion constant, shear deformation, etc.), and
transform the seven sets of calculated power series coefficients to six sets associated
with the six applied loads. Finally, the calculated values are transformed from the

principal axes back to the user defined coordinate system.

This approach strongly differs from our previous finite element based approach
(Kosmatka and Dong, 1991) in that the global matrix size is defined by the assumed
polynomial order and not the complexity of the cross-section. Moreover, cross-section
cavities can be easily treated by simply subtracting off the triangular subregions that
define the cavity. The aspect ratio of a triangle subregion is not critical, since the power
series is a global cross-section function and not a local subreg:on function (i.e., finite

element method).

Numerical Results
‘Prismatic cantilever beams with three different cross-section types are studied to

~validate the current approach (ellipse), prove convergence (triangles), and illustrate

interesting beam behavior not found in the literature (triangle, NACA-0012 airfoil). See

Fig. 3.a-c. Two different materials are considered including; an isotropic material (Al

6061-T6, E=69 GPa, v=0.333) and a transversely isotropic material (unidirectional high-
" strength graphite/epoxy fibers, (Table 1)) with Go3 = E22/(2(1+v23)). Generally

orthotropic or anisotropic beam behavior is introduced by orienting the material reference

frame (1,2,3) associated with the graphite/epoxy fibers relative to the beam coordinate
frame (x,y,2) using (o) and (8), where the angles are defined in Fig. 4 and the resulting

transformation between the two orthonormal coordinate systems is given as:

[1 } [sin(a) cos(f) sin(a) sin(p) | cos(a) }{ X}
2 } =| cos(a)cos(B) cos(a)sin(B) - sin(a) Y.
\37 ;. - sin(p) cos(p) 0 z

(28)
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The resulting 21 distinct flexibility coefficients ('S;j) are determined using standard
techniques (see Lekhnitskii, 1963) and are presented in detail in a recent paper (le and
Kosmatka, 1992; Appendix B). Aligning the fiber axes with the beam coordinate axes
with (e=p=0) will result in transversely isotropic beam behavior with v4=v5=vg=0.

Rotating the material axes about the (y) axis (set f=0, and vary &), will produce
orthotropic beam behavior with (v520) and v4=vg=0. Similarly, rotating the material

- axes about the (x) axis (set f=90°, and vary a), will produce (v4#0, vs=vg=0). Finally,
“-rotating the material fibers in the cross-section (x-y) plane (set a=90°, and vary B results

in (v4=v5=0, vg=0).

The current approach was initially verified by calculating the local cross-section
deformations associated with applied flexure (Py) for anisotropic cantilever beams with
elliptical cross-sections having three different aspect ratios (b/a = 0.1, 1.0, 10.0), see Fig.

3.3, and comparing with the exact results presented by le and Kosmatka (1992).

Anisotropic behavior was introduced by rotating the graphite/epoxy fibers in the x-z plane

- (09<a<900, B=00) so that v1, v2, and vs are nonzero. Each elliptical cross-section was

discretized using 90 pomts along the penmeter (i.e. divide the cross-section into 90
triangular subregions) and the local deformations of the cross-section (v, \,l/y. vz) were
modeled using cubic polynomials (Eq. 7.a-d). Thus the resulting matrix equation of (Eq.
10.a) had 26 unknowns. The calculated power series coefficients were found to be
comprised of only nine nonzero values that have the form

Wx = Py(301y+ ap1X2y + 303}’3) \

, (29.a-c)

Yy

P,(b1 o0X + bi2xy2 + b3ox3

vz P;{me C21X2y + Coay3) :

where these nine coefficients are expréséed from Eq. (14) as:
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amn = (amn(2) +ap amn(7)) '
bmn = (bmn(2)+82 bmn(?))r. (29.0-f)

Cmn = {Cmn(é)+32 Cmn(7)) '

and the subscripts (2) and (7) are associated with the second and seventh column of [¥].
The remaining 17 coefficients were always rdentxcally equal to zero rndependent of
aspect ratio and orientation angle In Figs. 5-7, the variation of the nine nonzero local
" deformation coefficients are presented as a function of orientation angle (o) for the three
aspect ratios, where the the exact solutions (le and Kosmatka, (1992)) are represented
by solid lines and the current approach is represented with circles. From these figures it
is clear that the current approach can reproduce the exact local deformation results over
“a broad range of aspect ratios and orientation angles. Usrng these local cross-section
deformatron functions, the torsron constant shear deformatlon and shear center location
were ¢ calculated and also found to be in complete agree ent with the exact solutions.
Readers mterested in further drscussrons s involving the vanatron of cross-section warprng,
stress distribution, and section properties with fiber orientation angle and elliptical cross-
section aspect ratio are referred to (le and Kosmatka (1992)).

A second set of homogeneous isotropic and anisotropic cantilever beams having
triangular cross-sections were analyzed to first prove convergence of the cross-section
parameters with increasing power series polynomial order and second illustrate
interesting section property information not found in the literature. The triangle
- represents an interesting cross- -section shape because even though it is geometrically
simple (3 corner points, three triangular subregions), closed-form torsion and flexure
solutions for the local cross-section deformations exist for only the isotropic equilateral
triangle, whereas the local cross-section deformations for any other aspect ratio (b/a) are
represented by an infinite series of transcendental functions. For these cross-sections,
the current approach represents a "best-fit" to the infinite series, where almost all of the
calculated coefficents will be nonzero. As the order of the power series polynomial is
increased, the calculated coefficients may vary slightly, but the calculated cross-section
integrals (section prooenies;) will experlence virtually no change. In this study, a 9t
order power-series polynomial was used for each of the three local deformation functions

(161 total unknown coefficients) and the numerical integration was performed exactly
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using a 52-point Gaussian Quadrature formula (Dunavant, 1985). A second coordinate
system (ZY) is introduced in the triangle (Fig. 3.b), where the origin is located at the mid-
length of the base (b) and (x) bisects the triangle.

To study convergence of the section properties with polynomialiorder we initially -

| analyze an isotropic (Al 6061-T6) cantilever beam with a thin triangular cross-section

(L/a=10, b/a=0. 1). In Table 2, the key section parameters are presented as a function of
polynomral order and matrix size ( [K] ). The normalized shear center locations, Xs/a and
Xs*/a, are presented in the (x,y) system, where the two values are significantly different for

- this thin cross-section, but both approaches exhrbrt monotonic convergence. The torsion

constant (GJ = 1/a3) is also presented where agaln the solutions converge quickly.
Lastly, the ratios of the centroidal tip displacement associated with shear deformation to
th"e:,tptal centroidal tip displacernent for applied flexure loads (Px) and (Py) are presented,
where the magnitudes of the ratios are given, from Eq. (18.a-c), as: '

Ushear _ _ T2l Venear . _ W2t (30.ap)
Uiotal L. PeL® ' Viotal p,13 '
+
%20~ * 3E1, Wzro)“—x—;g,:-,xx

- As expected, shear deformation is a much larger effect for flexure loads applied in
x-direction because the effective beam-length aspect ratio is much shorter in the x-z
plane (L/a = 10) compared to the y-z plane (L/b = 100). Both values exhibit monotonic
convergence, where it Is interesting to note that the x-direction value converges quickly
using a low polynomial order (3). A second convergence study was performed using the
same geometric beam dimensions, but generally anisotropic behavior was introduced by
orientating unidirectional high-strength graphite/epoxy fibers with a=p=30°. The
calculated section properties are presented as a function of polynomial order in Table 3.
The beam root and tip shear center locations are presented using both approaches,
where itis observed that: (1.) the location converges monotonically with increasing
polynomral order, (2.) the root shear center locations are within the cross-section, (3.) the
tip shear center locations are well outside of the cross-section, and (4 ) and the result

~ obtained by extending Reissner's approach is closer to the centroid (Xs/a=0.333), more

conservative, than the result obtained by extending the Griffith/Taylor approach. The
torsion constant (GJ) and the ratios of the centroidal tip displacement associated with
shear deformation to the total centroidal tip drsplacement for applied flexure loads (Px)
and (Py) are also presented where again these parameters converge monotonically.
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In addition to the convergence study, three studies are presented that investigate
the variation of the shear center location with cross-section aspect ratio and material
properties. In Fig. 8, the sensitivity of the shear center location with aspect ratio (b/a) and
Poisson's ratio (v) is presented for an isotropic cantilever beam. The bold solid line and
the thin solid lines represent the shear center locations based upon extending Reissner's
and Griffith/Taylor's approaches respectlvely, ‘where the shear center location based
upon Griffith/Taylor's approach is clearly dependent upon (v) for thin sections, whereas
the extended Reissner-based prediction is independent of (v). The circular symbol
represents the closed form thin-plate prediction of Reissner (1989) for triangular isotropic
- cross-sections. These results illustrate: (1) for very low aspect ratio triangles the
difference in the two approaches for locating the shear center can be profound, (2) the
thin plate solutions of Reissner (1988) are valid for only a very small aspect ratio range
" (bla<0.04), (3) both shear center predrctlons converge as the aspect ratio approaches
that of an equilateral triangle (b/a= 1.155), then (xs= xs*=0), and (4) for large aspect
ratios, both shear center predictions are nearly coincident and they converge to the
cross-section mid-length (&/2). This occurs because for triangular cross-sections with
large aspect ratios, the out-of-plane flexural warping function approaches that of a thin

rectangle cross-section.

In a second study, the shear center location was determined for a slender
cantilever beam (L/a=10) with a thin triangular cross-section (b/a=.01) composed of ofi-
axis unidirectional high-strength graphite/epoxy fubers (-90%<a<90°, =0°). In Fig. S,
both shear center locations are presented for the beam root and beam tipas a function of
orientation angle ( a). At the beam root, the extended Reissner based approach Is
mdependent of ( ) whereas the extended Griffith/T. aylor approach is highly dependent
upon (a). This is expected, based upon the above results for an isotropic triangular
section wh»ch showed that the anfrth/T aylor solutron is sensitive to material cross-

coupling eﬁects for thin sections. At the beam trp, both approaches for locatrng the shear

center produce identical results when the orientation angle is either close to 0° (-10%<a <

100) or close to 90° ( 70°<a< 1100 70°<a<1 10°) Outs:de ‘of this range, the two

approaches produce tip shear center locations that can lie well outside of the cross-

section shape, where the extended Reissner approach is much more conservative.

In a third investigation, the sensitivity of the shear center location with varying (vs)
was determined by studymg a slender cantilever beam (L/a=10) with a triangular cross-

section (b/a- 1) composed of off-axis unidirectional high-strength graphite/epoxy fibers
(a=00°, -90°<B<90°) Since (v4=v5=0) the shear center location is a cross-section
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property that is independent of beam-length. In Fig. 10, both shear center locations are
presented as a function of orientation angle (f). Inthe x-direction, the Griffith-Taylor

--Reissner approach, whereas in the y-direction, the extended Reissner approach is

clearly dependent upon (f) and the Griffith-Taylor based prediction is virtually zero.

A final study was performed to investigate the variation of the shear center location

. with material orientation angle () in typical composite general aviation aircraft wings

and helicopter blades. These structures are approximated as homogeneous cantilever
beams having a NACA-0012 airfoil cross-section (Fig. 3.c), where a second coordinate

-system ()7,7) is introduced with the origin at the leading edge. Two beam-lengths were

considered; (L/c=3) for typical general aviation aircraft wings and (L/c=20) for long
slender helicopter blades, where (c) is the cross-section chord. The airfoil cross-section
is discretized using 95 points on the boundary (i.e. 95 triangular subregions), based
upon the mathematical definition of (Abbott and Von Doenhoff, 1959), and the section
centroid is located at (0.42067¢). Each of the three local deformation functions are
modeled using a 9th order power-series polynomial (161 total unknown coefficients) and

“the numerical integration was performed exactly using a 52-point Gaussian Quadrature

formula (Dunavant, 1985).

In Fig 11, both shear center locations are presented for the beam root and beam
tip (L/c=3,20) as a function of orientation angle (a). Atthe beam root the results are
similar to the above triangular cross-section study (Fig. 9), where the extended Reissner
based approach is nearly independent of (@), whereas the extended Griffith/Taylor
approach is slightly more dependent upon (o). At the aircraft wing tip (Fig. 11, center
region), it is observed that: (1) the two shear center definitions are in near perfect
agreement when (-59<a<10°) and (609<a<1109°), (2) the extended Reissner definition of
the shear center can be ahead (5?<0) and outside of the airfoil section if (-8°<a<-520) or
behind (3('>c) and outside the airfoil section if (159<a<429), whereas the extended
Griffith/Taylor definition of the shear center can be ahead (¥<0) or behind (X>c) the airfoil
section if (-89<a<-60°) or (120<a<550), respectively, and (3) the maximum distance that
the shear center can be located either ahead or behind the wing-tip section occurs for the
extended Reissner definition at (a=-30°, X*s_=-.5¢) and (a=300, ¥*sL=1.20), respectively,
whereas the extended Griffith/Taylor definition has (a=-389, )'('sl_=-1 .1¢) and (a=360,
%sL=1.7¢), respectively. T

3.21



For the tip section of the helicopter blade (Fig. 11, upper region), the shape of the
curves represent an amplified version of the wing section. Thus, the shear center
location is well outside of the tip cross-section for most values of (o), where the maximum
distance that the shear center can be located either ahead or behind the wing-tip section
occurs for the extended Reissner definition at (a=-309, i"sL:-SC) and (a=309°, 'ic"sl_=6.5c),
respectively, whereas the extended Griffith/Taylor definition has (a=-389, XsL=-9¢) and
(=360, ')}'sL=9c), respectively.

Conclusions

The behavior of a tip-loaded anisotropic cantilever beam with an arbitrary cross-section
is studied using Saint-Venant's semi-inverse method along with a power series solution

‘for the local in-plane and out-of-plane deformation warping functions. The power series
coefficients are determined by solving a set of variationally derived linear algebraic - -
equations. Using the resulting three-dimensional displacement solutions, the shear
deformation associated with applied tip loads is investigated as well as the shear center
location. Two different definitions of the shear center are presented for anisotropic
beams by extending the classic approaches of Griffith/Taylor and that of Reissner. Both

- of the extended definitions reveal the linear dependency of the shear center location with

beam-length, where the extended-Reissner prediction is much closer to the centroid then

the extended Griffith/Taylor prediction. Numerical results are presented for three different
cross-sections and two different materials. For elliptical cross-sections, it was shown that
the calculated power series coefficients were in exact agreement with existing elasticity
solutions for anisotropic beams over a wide variety of cross-section aspect ratios. For the
triangular cross-sections, it was shown that the calculated power series coefficients
represent a "best-fit" to the infinite series of transcendental functions and the warping-

- related section properties (shear center, torsion constant, shear deformation) converge
quickly with increasing power series order. Moreover, three studies were performed to
illustrate the sensitivity of the shear center location with cross-section aspect ratio,
material definition, fiber orientation, and beam-length. A final investigation was

~performed to study the length-dependency of the shear center in composite general
aviation aircraft wings (L/c=3) and helicopter blades (L/c=20). At the beam root, the
extended Reissner approach is nearly independent of material orientation angle,
whereas the extended Griffith/Taylor approach is dependent. At the aircraft wing tip, it is
observed that the two shear center definitions are in near perfect agreement over a small

_ range of orientation angles and the shear center can be located either ahead or behind
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the wing-tip section. For the helicopter blade tip section, the shear center location is well
outside of the tip cross-section for most values of orientation angle. :
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Table 1: Material properties for unidirectional high-strength graphite/epoxy fibers.

E11 ‘ 145 GPa
'E22 = E33 a 10 GPa
G12=G13 | 4;8 GPa
vi2 =vi3 0.250
v23 0.400
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Table 2: ‘Calculated section properties of an isotropic cantilever beam with a thin
: triangular cross-section as a function of power series order (b/a=0.1,
L/a=10, v=0.333)

Polynomial | matrix Xs/a ¥Ja | GJ (103) | Ushear (103) Vshear (105)

_order | size thotal Viotal
2 14 2718 .2923 2.168 4.640 -24.26
3 26 .1398 .2035 2.118 5.815 4.594
4 41 .1441 .2053 2.060 5.815 5.049
5 59 .1481 .2070 2.007 5.815 4583
6 80 1515 .2082 1.969 5.815 4.671
7 104 .15830 .2089 1.943 5.815 4.690
8 131 .1536 .2093 1.938 5.815 4.700
9 161 .1636 .2093 1.936 5.815 4.701
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Fig. 1 Anisotropic cantilever beam.
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4Fig. 3 a.) Elliptical, b.) triangular, and ¢.) NACA-0012 airfoil cross-sections.
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o (degrees)

Fig. 5 Nondimensionalized in-plane coefficients (agy,a21,893) as a function of
orientation angle (a), (f=0) and cross-section aspect ratio (b/a) for an elliptical
- cross-section (— exact, o current approach).
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o (degrees)

Fig. 6 Nondimensionalized in-plane coefficients (b10.b12,b30) as a function of
orientation angle (e), (8=0) and cross-section aspect ratio (b/a) for an elliptical
cross-section (— exact, o current approach).
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Fig. 7 Nondimensionalized in-plane coefficients (cg1,621,c03) as a function of
orientation angle (a), (f=0) and cross-section aspect ratio (b/a) for an elliptical
cross-section (= exact, o current approach).
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a

Fig. 8 Variation of the shear center location in an isotropic triangular cross-section as a
function of (b/a) and (v), ( — Giriffith/Taylor approach, === adaptation of
Reissner approach, o Reissner prediction).
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Fig. 9 Variation of the shear center locations at the beam root and beam tip of a thin
composite triangular cross-section (b/a) as a function of orientation angle (a),

(B=0°).
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Fig. 10 Variation of the shear center locations at the beam root and beam tip of a thin

composite triangular cross-section (b/a) as a function of orientation angle (f),
(a=900),
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~ Fig. 11 Variation of the shear center locations at the beam root and beam tip of a
composite aircraft (L/c=3) and a composite helicopter blade (L/c=20) as a
function of orientation angle (), (3=00°).
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Chapter 4 Exact Cross- Section Warping Functions for Generally Anisotropic
Beams Having Solid Elliptical Cross-Sections

by

C. A. le and J. B. Kosmatka
Department of Applied Mechanics and Engineering Sciences
University of California, San Diego
La Jolla, CA 92093

BSTRA

The St Venant displacement distributions are developed, based upon the theory of

' elashcuty, for a tip-loaded homogeneous cantilever beam having an elliptical cross-

séction and rectilinear anisotropy. These distributions are found by integrating the strain
distributions, where the local in-plane deformation and out-of-plane warping of the cross-
section are exactly determined. A definition for the 'anisotropic shear center is presented
by extending the classical definition for isotropic beams. The additional transverse beam
displacement associated with shear deformation is determined for applied extension and
flexure loads. Numerical results are presented which show (1.) the anisotropic shear
center location is linearly dependent upon beam length and can be located outside the
cross-section, (2.) shear deformation can actually be negative for certain beam aspect ra-
tios and material definitions, and (3.) the local cross-section deformations and the trans-
verse shear stress distributions bear no resemblance to their isotropic counterparts.

INTRODUCTION

The elastic stress and displacement distributions of isotropic cantilever beams
subjected to tip loads (i.e., extension, bending, torsion, and flexure) has been exhaus-
tively investigated by making use of Saint-Venant's principle in the formulation of the
boundary-value problem. Closed-form displacement and stress solutions exist for simple
(elliptical) cross-sections, series solutions exist for slightly more complex (rectangular, tri-
angular) solutions, and approximate solutions based upon the application of the Ritz
method exist for arbitrary cross-sections. Detailed examples of these solutions can be
found in many texts covering the theory of elasticity (for example, (Sokolnikoff, 1956) or
(Timoshenko and Goodier, 1970)).

* Ph.D. candidate
. Assistant Professor
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, Conversely, the study of generally anisotropic cantilever beams subjected to tip
loads has received far less attention. In Lekhnitskii's monograph (1963), the stress and
displacement distributions were formulated in terms of known quantities (geometric and
material properties) and unknown functions which represented the local in-plane defor-
mation and out-of-plane warping of the cross-section. A solution procedure for determin-
ing the stress distribution was presented based upon the use of Airy and Prandtl stress
functions, where numerical examples include beams having an elliptical (closed-form),
rectangular (series), or an arbitrary cross-section (approximate). But no results were pre-
sented for the displacement distributions. Recently Kosmatka and Dong (1991) devel-
oped an analytical (finite element based) model for determining the complete displace-
ment and stress distributions of a homogeneous prismatic anisotropic beam with an arbi-
trary cross-section, by solving the two-dimensional boundary problem in terms of the local
“In-plane deformation and out-of-plane warping of the cross-section. Numerical results
used these calculated displacement and stress distributions to study the beam behavior,
determine important section constants, and show that the shear center location is linearly
dependent upon beam length.

In the current paper, we will develop the complete St. Venant displacement and
stress distributions, based upon the theory of elasticity, for a tip-loaded homogeneous
cantilever beam having an elliptical cross-section and rectilinear anisotropy. The dis-

placement distributions are found by integrating the strain distributions calculated by
Lekhnitskii (1963), where the local in-plane deformation and out-of-plane warping of the -

cross-section are exactly determined. The resulting displacement solutions are used to
develop a definition of the 'anisotropic shear center which involves extending the original
work of Griffith and Taylor (1917) to homogeneous prismatic anisotropic beams.
Moreover, the additional transverse beam disﬁé&ément associated with shear deforma-
tion is determined for applied extension and flexure loads. It is also shown that the shear
deformation is zero for applied bending and torsion of homogeneous anisotropic beams.
Numerical results are presented to show how material anisotropy effects (1) the local in-
plane deformation and out-of-plane warping, (2.) the shear center location, and (3.) the
stress distribution.

This model will be useful to developers of refined (or higher-order) one-dimen-
sional theories for anisotropic beams, who wish to include the local in-plane deformation
and out-of-plane warping of the cross-section as part of the displacement kinematic field
in order to get exact three-dimensional stress distributions.
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DISPLACEMENT DISTRIBUTIONS

Consider a cantilevered beam of length (L) with an elliptical cross section of area
(A) composed of an anisotropic homogeneous material (see Fig. 1). A Cartesian coordi-
nate system (x,y,z) is defined on the beam where (x) and (y) axes are coincident with the
principal (i.e., major and minor) axes of the root cross section and (2) is coincident with the

" line of centroids. Displacements in the (x,y,2) directions are defined as (v), (v), and (w),
_ respectlvely At the root end (2=0), the beam is constrained by fixing the displacements at

the centroid and the rotations about the centroid as follows

u=v=w=0, —=—=—-—=0. (1.a-9

,‘At the beam's free end, tractions are applied that are equivalent to a general force (P) with

flexural (Px, Py) and extensional (Pz) components and a general moment (M) with bend-
ing (Mx, My) and a torsional (M) components. Itis further assumed that the lateral surface
of the beam is traction-free.

The stresses and strains at a point can be written in array form as:

{6}T={ Oxx, Oyy, Ozz, Tyz, Tax, Ty } »

(2.a,b)
(5)T=( Exx, &y, €22, Wz, Yex, Ky } .
where the strains are related to the displacement components by:
ou ov ow
Ex==0 Ey==-, Ezz=—_

o ¥ 9 (2.c-h)
Yz = ov oW 7 ow  du Ty = ou L ov
£ oz "oy’ =% Tz oy Yox

and the stress and strain components are related by the constitutive relations of a linearly-
anisotropic hyperelastic material:

(e} =[Sl{a}. 2.1
Here [S] is a fully populated symmetric matrix with 21 distinct coefficients Sij (i =1-6).

The behavior of the beam will be studied as two independent cases. The first case,
which involves generalized plane strain behavior of the beam, is associated with the ex-
tensional force (P;), the bending moments (Mx, My), and the torsional moment (Mz). The
second case is associated with the applied flexural forces (Px, Py), where it is assumed
that the stress (ozz) varies linearly in the z-direction and the remaining five stress compo-
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nents can bs nonzero.

" For a homogeneous anisotropic cantilever beam with an elliptical cross-section
subjected to an applied extensional force (Pz), bending moments (Mx, My), and/or tor-
sional moment (M), the stress distributions are given (from Lekhnitskii (1963)) as:

M
_P Mxy__z

Oxx = O'yy= Txy=o y Ozz = Tx = __Z.y ’ (3.&-0

AT T T 2l

where (a) and (b) are one-half of the major and the minor dimensions of the cross-section,
respectively, (see Fig. 1), Ais the cross sectional area given as (zab), and Ixx and /yy, are
the area moments of inertia about the (x) and (y) axes given as (zab3/4) and (ra3b/4), re-
spectively. These stress components, which are independent of (z), are equal to those of
an identical isotropic beam.

The displacement components (u,v,w) are determined by substituting Eqns. (3.a-/)
into (2.)) and integrating using the standard technique (see Sokolnikoff (1946) or
Timoshenko (1970)), where the constants of integration are determined using the bound-
ary conditions (1.a-/) at the root. Thus,

---——Z—{wx&y’ (v1x+-‘5y+ﬁz 4——(22+v1x2—v2y2-v4yz)
E Ixx 2E |y

EA
(4.8)
+ - M, (V4z2) -——3—(2315X +Ssey +3552)y+—3-(s14x2_324y2_s44yz)
2E lyy\2 " ] 4lxx
v -__L(_WQ \2}’) + __M_L(vsx2+2v2xy +Vaxz)- __L(zz —W X2+ oy 2-vsx2)
2E lyy 2 Ely “s)
ﬁ 2 Z S 2. S 2 s Mz S 28 s zx .
2E/x,( }’4; (St5x2-Sasy2+ 55xz)+4’yy(46x+ 24y +S442)
= £ - - -— J_ !: ﬁ V4., _
"SRl W) Elxx( e z)y+E’yy(2x+2y 2 (4.0)
.C

M —Z (855X + Sasy + 2S352)y +—Z—( SisX + Syy + 2834z)x
4’xx 4Iyy ; o

in which E (..1/833 ) is Young's modulus in the z-direction and v; are the cross-coupling

coefficients defined as vi=—Si3/S33, Where v; and v, are the usual Poisson coefficients,

and Vg4, Vs, and Ve express the three-dimensional extension-shear coupling in the

~ anisotropic beam. The above displacement results are in agreement with the plane-strain
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solutions developed by Lekhnitskii (1963) for an anisotropic beam. One can see that the
appllcatuon of an extension force (P,) will produce beam extension, shear deformation (as

a result of v4 and vs), and deformations within the cross-section plane composed of

Poisson contractions (from v4, v5) and shear (vg). Applying a bending moment (M, My)
will produce beam bending as well as beam twisting (as a result of v4 and vg), in-plane

~ cross-section deformations which include the formation of an anticlastic surface (v, v3)
and shearing (vg), and out-of-plane cross-section deformation that resembles torsion-type

warping (bi-linear function) as a result of anisotropic material coupling (v4,vg). Finally,
applying a torsion moment (M,), will produce beam twisting as weil as beam bending (as
a result of v4 and vs) and shear deformation, in-plane cross-section deformations which
include shearing and the formation of an anticlastic-type surface, and out-of-plane cross-

~section deformation associated with torsion-warping (bi-linear function).

The behavior of the homogeneous anisotropic cantilever beam subjected to ap-
plied flexural load (Py) can be studied using the following stress functions (from
Lekhnitskii (1963)) ‘

2 ,
- -!.-Zl - - zl\ xl-1Y
wi=Fy B‘{‘ el lb)z' v 32{1 el (b)zf Iy 53{1 & ‘b)z} (>0
where the coefficients (Bj, i=1,2,3 ), which are functions of the cross-section aspect ratio

and the material definition, are determined by solving a set of linear algebraic equations.
These three equations are presented in the Appendix (Egns. A.1-14). The stress compo-
nents written in terms of the stress functions are

v * v

Oxxy = — , ayy = ’
dy? dx2

_ . B 2 . o b
Ozz = Y —Y 2L - 2) + WXy + v4y° + V4A + WOxx + vzoyy+ VaTyz + V5 Tzx + W Txy
XX \ (6 a_o

dya P b2 y oy " WA

Ty = - Y2 1- X Tx = — , Ty = - .

By substituting the stress functions (Eqns. 5.a,b) into (6.a-/), one can easily sees that: (1)
the in-plane stresses (oxx, Oyy, Txy) are nonzero as a result of anisotropy and only func-

tions of the cross-section coordinates, (2) the normal stress (ozz) contains the classical
strength of material term ( ~P), (L=z) y / Ixx ) and the remaining terms of (oz;) are inde-
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pendent of (z) and produce a zero resultant when integrated over the cross-section area,
and (3) the shear stresses (7xz, 7yz) contain the classical isotropic terms and additional
“terms associated with anisotropy which are both independent of (2).

7 The displacement components (u,v,w) are determined by first subsmutmg Eqns.
(5 a-f into (6.a-f), follow by substituting the resumng stresses into (2 :) and then integrating
the strains, where the constants of integration are determined using the boundary condi-

tions (1.a-H at the root. Thus,

u=- {(2v1 x+ vey)y(z- L)+-‘125-yz(z- 2L))

Y
2E Iy

+ Py(aw X +801 Y +830 X3 + @1 X2 y + @12 X y2 + &3 ya) .

P, (s2,. o AP
v = P @ (z-30)- Yoz (- 21) + (v2y2-v1 xz)(z-L))
(7.a-¢)

+

Py(bw X +bg1 y +bag X3 + bp1 x2 y + bi2 X y2 + boa y3) :

b D)-yz(z-20)-YaPr ,
W= g (X vaylz- - yzlz-2l) -y 2

+ Pylciox+cory+ 030 x3 + 024 x2y+c12xy2+003y3) ,

where the coefficients aj, bjj, and g;j (i.,j = 0-3) are presented in the Appendix (Eqns. A.15-
32) and the subscripts (i) and () refer to the order of the polynomial ( (X y)). The above
dlsplacement dastnpguqn%exactly descnbes the extension, bending, and twisting of the
anisotropic cantilever beam as a result of an apphed flexure force (Py, Py) as well as local
in-plane cross-section deformations (all terms associated with aj and bj) and out- -of-plane
cross-section warping (all terms associated with c.,) These solutlons are in exact agree-
ment with the results of (Kosmatka and Dong (1991)), where their model uses the finite
element method to approximately determine the local cross-section deformations for an

arbitrary cross-section.

The shear center for a pnsmatlc beam composed of an |sotrop|c matenal is a
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property of the cross-section and independent of beam-length. It is located using the
classical definition (Griffith and Taylor (1917)), 'the load point that produces a zero mean
value cross-section twist (i.e., zero twist about the centroidal axis)'. In fact for doubly-
symmetric cross-sections (including the current elliptical cross-section), the shear center
of an isotropic prismatic beam is located at the centroid. Fora prismatic beam composed
of a generally anisotropic material (v4, v520), the classic definition is not applicable and

~ we will develop a more appropriate definition.

The twist about the centroidal axis (x=y=0) for the cantilever beam subjected to a y-
direction tip flexure load (P,) offset from the centroid by an amount (x) is calculated using

 e- a—"-i‘i), (8.2)

| - 20x 3
where (u, v) are found by combining Eqns. (4.a,b) and (7.a,b) with (Py=P,) and (Mp=P2xs);

o = gf;(sas(u- 2+ xs{s44(g)2+355)}z . (8.5)

The single-underlined term, which is associated with anisotropic ‘bend-twist’ coupling
(Kosmatka and Dong (1991)), is a quadratic variation of the cross-section twist as a result
of the applied flexure force (Py=P,), whereas the double-underlined term represents a
linear variation as a result of the applied torsion moment (M;=P,x;). Since the cross-sec-
tion twist varies quadratically along the beam-length, it is not possible to achieve zero
twist along the entire beam-length. Instead the best that one can achieve is zero twist at
two locations: the beam root (z=0) and the x-y plane that contains the applied load. Thus
the x-direction 'anisotropic shear center ' location for the free-end of the cantilever beam
is found by substituting (2=L) into Eq. (8.b) and finding the value of (xg) that produces a
zero cross-section twist (6=0): -

S35 L, (9)
Seltf + 559

where the location depends upon the beam-length and reduces to the classic definition
(centroid) for isotropic materials. The variation of the cross-section twist over the beam-
length is found by substituting Eq. (9) into (8.b)

xs=-(

PoL2S
Bt () E (10

where the twist is zero at the beam root and tip (load plane) and reaches a maximum at
the beam mid-length (Fig.2).
4.7



The y-direction component of the shear center can be found in a similar fashion by
applying an x-direction flexure force (Py) that is offset form the centroid by an amount (yg).
Finally we formally define the ‘anisotropic shear center' as; "the load point that produces
general bending and twisting of an anisotropic beam with zero mean value twist (zero
twist about the centroid) in the cross-section plane that contains the applied load.”

SHEAR DEFORMATION

An examination of the displacement components of Eqns. (4.a-c) and (7.a-¢) re-
veals that the deformation of the centroidal axis (x=y=0) agrees with the standard strength
of materials solutions, but that the additional displacement associated with shear defor-

‘mation ié not included. This occurs because our original root boundary conditions (Egqns

(1.a-f)) assume that the slope of the centroidal axis is zero (du/dz = dv/oz = 0) as opposed
to fixing the rotation of the root cross-section (dw/dx = gw/dy = 0). This additional dis-
placement associated with shear deformation can be included by simply rotating the de-
formed beam so that slope of the deformed root cross-section at (x=y=0) is coincident with
the x-y plane, and thus the deformed centroidal axis will have a nonzero root slope (see
Timoshenko and Goodier (1970) for further details). These rotation angles are equal to
the shear strains (%az. wz) at the beam root centroid (x=y=2=0). Calculating the rotational
angles usmg Eqns (4.a- c) and (7.a-c):

¢x = Yz| = Pfco1)- Pz{;:-%} , ¢y = %z| = Pfco)- PZ{%%} ,» (11.ab)
X=y=2=0 Xuyp=2=0) :

where shear deformatlon for a homogeneous anisotropic beam occurs as a result of ap-

plled extension and flexure, but not applied bending or torsion. The final form of the dis-
placements distributions that includes shear deformation is found by modifying the dis-
placements (u,v,w) of Eqns. (4.a-¢, 7.a-¢) in the following manner:

U=u+z¢, V=v+zg, W=w-y&-x¢. (12.a-c)

NUMERICAL EXAMPLES

In this section, three detailed numerical examples are presented to show how ma-
terial orthotropy or anisotropy effects the local in-plane deformation and warping of the
cross-section, the shear center location, and the shear stress distribution. Only the behav-
ior of the beam as a result of an applied flexure force (Py) will be studied, since beam be-
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havior as a result of extension (Pz), torsion (M), and bending (Mx, My) has been studied
in detail by Lekhnitskii (1963) and Kosmatka and Dong (1991).

The beam is assumed to be composed of a single set of unidirectional high

'strength graphite/epoxy fibers, which is a transversely isotropsc material that has five in-
Wdependent constants (see Table 1) with a sixth constant that is equal to Ga3 =

E2/(2(1+V23)). To achieve orthotropic and/or anlsotroplc beam behavior, the material ref-

. erence frame (1,2,3) is oriented relative to the beam Canesian coordinate frame (x,y,2)
',"usmg “reference angles (B) and (a), which are defined as rotations about the positive z-

axis and the positive material 3-axis, respectively. See Flg 3, where the transformatlon

‘ :relatlon between (1.2 3) and (x,y,z) is equal to

1 sin(a) cos(B)  sin(a) sin(B) cos(a) X
2 } =| cos(a)cos(B) cos(a) sin(B) - sin(o) Y |- (13)
3 - sin(B) cqs(B) 0 z

The resulting 21 unique material compliance coefficients (Sj;, i,j=1-6) are determined us-
ing standard transformation techniques (see Lekhnitskii, 1963).

Example 1

In this example, the local cross-section deformation and the shear center location
are studied as a function of material orthotropy and cross-section aspect ratio. Material
orthotropy is introduced by rotating the fiber set in the x-z plane using the reference angle
(@), while holding (3=0). Note that, in this situation, Sjg=Sjg=0 (=1-3,5) and v4=vg=0.

The coefficients (B;, i = 1,2,3) are determined using Eq. (A.1) as By = B3 =0and

B =1 S%s - 4513533 + 2333344(2)2 . (14)

A | S8 - SsSss - 35xS:4Lf

The local deformation within the cross-section (x-y) plane and warping out of the
cross-section plane as a result of an applied flexural force (Py) is characterized in the u, v,
and w directions, using Eqns. (7.a-c), as simply

P){ao1y'+a21x2y +303y3). P,(b1 0X +b12xy2+b30x3). P;{Cmy +Co1x2y +Cgay8|, (15.aC)

where the other deformation coefficients (aj, byj, c;j) are zero for (3=0). In Figs. 4 through
11, the nonzero coefficients are presented as a function of orientation angle (a) and

4,9



aspect ratio (b/a), where they have been nondimensionalized using either (E11A) or
(E111xx). For this material, all of the deformation coefficients are independent of aspect
ratio (b/a) for a=8° and 60°. The coefficients agy and byg, which define the uniform in-
plane cross-section shear, are presented in Fig. 4, where positive values can be obtained
for thin cross-sections (b/a=0. 1) with 18%<a <399. In Figs. 5 and 6, the coefficients (az4
and bsp) which are associated with (x2) variations in (%y) are presented. These two coef-
fi cients, which have relatively large magnitudes and opposite signs, represent a signifi-
cant amount of in-plane cross-section deformation associated with relatively low (%y).
The remaining coefficients (ag3 and by2), which are associated with (y2) variations in
(%y), are presented in Figs. 7 and 8. Although these coefficients are generally smaller
than az¢ and bgg, they are associated with a larger component of (%y). For thin cross-
sections (b/a=0.1), ag3 reaches a positive maximum at 609, by2 reaches a negative maxi-
‘mum at approximately 33°, and the resulting component associated with (y?) variations in
(%y) reaches a positive maximum at 60° and a negative maximum at 30°. Whereas for
thicker cross-sections (b/a=1.0,10.0), the component associated with (y2) variations in
(%y) is always positive and reaches a maximum at 45°.

The coefficient (cg1), which is proportional to the amount of y-direction shear de-
formation associated with Py (see Eq. 11.a), is presented in Fig. 9, where for thin cross-
sections (b/a=0.1) this term is becomes negative for 189<a <33°. The out of plane warp-
ing constant (c21), which is always negative for thin cross-sections (b/a=0.10), is pre-
sented in Fig. 10. The remaining out of plane warping constant (cp3) is presented in Fig.
11, where it is always negative for all but the thinnest cross-sections.

The 'anisotropic shear center locatior' of the beam tip cross-section (z=L) as a re-
. sult of an applied transverse tip load (P2) can be determined by substituting the definition
of the compliance coefficients with (3=0) into Eq. (9)

- 1lsinee i 142 _‘|_5i”(4a)
Xg = _L‘ (522 Eq n(2e) + (613 -EJLT( *2ms)- (16)
2\cos2(2a) Ey sin (2a) cosz(a) 2(1+vzg)sln2(a) '
\ Gis +( = *2us) "'(a Gis Ez )

where the results are presented in Fig. 12 as a function of orientation angle (a), aspect ra-
tio (b/a), and normalized to the beam length (L). For (a=0°) and (80°<a<90°) the shear
center is located at the centroid (i.e. isotropic shear center). For (0°<a<809), the
anisotropic shear center is offset from the centroid, with the maximum offset occurring
near (a=40°) for thin cross-sections (b/a=0.1) and approaches (30°) for circular (b/a=1)
and thicker cross-sections (b/a=5). As an illustration, the anisotropic shear center of a
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__ slender beam (Ua—10) wuth a thin cross-section (b/a=0.10) and (a=409) can be found us-

ing Eq. (16) or Fig. 12 as xg = 4.8a, which is well outside the cross-section. Furthermore,

~ doubling the beam length (L/a-20) will double the offset to the shear center location

(xs_9 6a). A sumplmed form of the shear center location for small onentatton ang]es (a)
can be found by taking a Taylor series expansion of Eq. (16)

, Gia
. _{1 ZE (1 +wa)

al . (17)

A second example is presented to explain why the added displacement associated
with shear deformation (cg1L) can be negative for a thin (b/a=0.1) tip loaded (Py) can-
tilever beam composed of off-angle unidirectional graphite/epoxy with 18°<a <39° and

~-B=09. See Fig. 9. Thus the inclusion of shear deformation makes the beam stiffer, as op-

posed to more flexible as one normally sees in plate bending. From Eqn. (A.28),
cor = Baa(2 + Bo). (18)

where this unusual situation occurs whenever (Bz < -2/A), since B4 which equals Sa4 for

(o0, B=0) is always greater than zero. Substituting Eqns (5.a,b) into (6.0), the transverse

shear stress (7yz) can be written as
o = A3 2o ()& oealzF) 1

where the shear stress (7y;) at the centroid (x=y=0) will be negative whenever Bz < -2/A.

" The transverse shear stress (ty;) distribution for two slices of a beam element (dz) is pre-

sented in Fig. 13, where the stresses are small and negative near the centroid and large
and positive near the outer edges (x=ta) so that the integral of (7yz) over the cross-section
will equal (Py). This situation is typical for elliptical cross-sections and will not occur for
rectangular (plate-like) cross-sections, since (7yz=0) on the upper and lower surfaces of
the rectangular (plate-like) cross-section to satisfy the traction free boundary conditions.

An expression can be developed to define the bounds on this unusual condition by
substituting Eq. (14) into (20) and rearranging

‘Q)z 5 3535 - 2533(Sss + 2513) (20)
a 4533544
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For an isotropic beam, the above expression reduces to (b/a)? < -1/(2(1+v)) and thus this
condition will not occur. For an anisotropic beam composed of off-angle uni-directional S-
glass/epoxy (Ey1 = 55 GPa, Epp=FE33=16 GPa, G12=G13=7.6 GPa, vi2=v13=0.28), the
normalized shear deformation coefficient (cp1) is presented in Fig. 14 for a broad range of
(o) and (b/a). It can be seen that this unusual condition does not occur and thus the in-
clusion of shear deformation will only make the beam more flexible. This can be traced to
the fact that S-glass/epoxy Is closer to an isotropic material than the graphite/epoxy of ex-
ample 1. ltis interesting to note that for S-glass/epoxy, all of the deformation coefficients
are independent of aspect ratio (b/a) for a =229 and 55° and the width between these two
points is smaller than that of the graphite/epoxy. Finally, as one chooses a material that
closely resembles an isotropic material (G12 = E11/(2(1+v12)) ), then these two points dis-
appear so that all curves are independent of (a).

Example 3

In this final example, the local cross-section deformation and the shear stress dis- -

tribution are studied for the case of a general anisotropic (a8 #0) beam composed of
graphite/epoxy (Table 1) and subjected to a flexural force (Py). For this general case, all
three coefficients (B;, i=1-3) and all eighteen deformation coefficients (a;, by, Gj, i,/=1-3) are
nonzero. The local in-plane deformations and the out-of-plane warping of the cross-sec-
tion are presented in Fig. 15.a,b for the case of (b/a=0.5) with orientation angles of
(@=30°) and (B=60°). The local in-plane deformation (Fig. 15. a) is represented by a non-
symmetric shape that is dependent upon the material orientation ahglres'(a,/?) The out-of-
plane warping (Fig. 15.b), which does not resemble the symmetric cubic-like warping of
an isotropic beam (Sokolnikoff, 1956), is divided into six alternating regions of positive
(solid lines) and negative (dashed lines) deformations. The effects associated with the
shear deformation coefficients (¢19, cp1) are not included in Fig. (15.b) because they pro-
duce only a rigid cross-section rotation and no cross-section deformation.

A quantitative vectorial scaled plot of the transverse shear stresses (7zx, ryz) for

(a/b=0.5) with orientation angles of (@=30°) and (8=30°) is presented in Fig. 16. From this
figure, it is interesting to see that the stress distribution does not resemble that of an
isotropic beam (i.e. a paraboloid with the maximum occurring at the centroid). Instead, the
distribution is nonsymmetric with the maximum occurring on the outer edge.

ONCLUS|

The complete St Venant elastic disp|écement and stress distributions are devel-
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oped, based upon the theory of elasticity, for a tip-loaded homogeneous cantilever beam
having an elliptical cross-section and rectilinear anisotropy. The displacement distribu-
tions are found by integrating the strain distributions, where the local in-plane deformation
and out-of-plane warping of the cross-section are exactly determined. A definition for the
‘anisotropic shear center is presented based upon extending the classical definition for
isotropic beams. The additional transverse beam displacement associated with shear
deformation is determined for applied extension and flexure loads. Numerical results are
presented which show for the flexural behavior of an orthotropic (c20,8=0) beam that the
local in-plane deformation and out-of-plane warpihg are highly dependent upon fiber ori-
entation and cross-section aspect ratio, where for two orientations the local deformations
are completely independent of cross-section aspect ratio. The anisotropic shear center
location is linearly dependent upon beam length and can be located outside the cross-

‘section depending upon the fiber orientation. Moreover, the added transverse displace-

ment associated with shear deformation can actually be negative for certain beam aspect
ratios and material definitions so that the inclusion of shear deformation may actually
make the beam stiffer, as opposed to more flexible. Finally, the local cross-section defor-
mations and the transverse shear stress distributions bear no resemblance to their
isotropic counterparts.
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Appendix
The constants (B,- ,1=1,2,3) are determined by sol\)ing
Gi1 Gy2 G || By \ Hy o
Ga1 G2 Gz |\ B2 | ={ H2 (A1)
G3t1 G32 Ga3z ]| B3 ‘ H3

where the coefficents of [G] and [H] are defined as:

Gi1 =4 (3B(2P+3peAf +2Brzsfoe) . Gz = - (3dBS + ra+ sn)

Gia = (315 + (Bes + Busl2f ). Gt =~ (Bra+3PedE) + Poo)
Ge = (3pulBf + ss). G = - (2842, (A2-A10)
Gar = 25 (Bos+ Pus + 3B{2f). Gsz = - 2fs |
- (Mﬂ)z+3ﬁss)
H = '2 {314 214)- J(Sss Bse) - 4(Q)2} |
Ho = - 2 USss - Bis)- 2510+ ,644(!2)2) (A11-13)
o H = -%{%(345-31345) Sas}.
Bij= Sj -%"fl. (A.14)

The x-direction deformation coefficients associated with an applied flexure load:

ﬁ12 ﬁ11}+32{ﬂ14} Ba{ﬁ15}+v1v4 +1314b

i
,——-—"—\

e "\ a2 2EA " 2y '
' 2

- -28,/Bie 6 (ﬁ«s}_ Pss) , Vave | Basb”
! No2 taz( B2 TP 2 [T aEA "t al

(A.15-18)
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The y-direction deformation coefficients associated with an applied flexure load:
b1° = - 281{-ﬁ1—26 +&2-6-} + Bz{ﬁié}- 33 ﬁSB +

b01 = -4B8 {ﬁ12

Vg Vs ﬂ46b
4EA ' aly !

»324b
2’x

{ﬁ15+P_4§_} {B14+ﬁss} Vivs ﬁ4s(b_)2
3p2 a2 332 12E I« 6x (A21-26)
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: Beo b2{382 823b2 p2) 6Ehx 6lx

T The out-of-plane deformation coefficients associated with an applied flexure load:

a8 5] ol |- s o 25 B2

. G0 = 2EA " 2y
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Table 1: Typical Material Properties of High-Strength Graphite/Epoxy.

Eq1

E22 = E33
Gi2=G13
Vi2 = V13

v23 -

145.0 GPa
10.0 GPa
48 GPa
0.25

0.40
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Fig

.15 a.) In-piane deformation, and b.) contour of out-of-plane warping of cross-
section with (b/a=0.5, a =300, p=600).
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Chapter 5 Transverse Vibrations of Shear-Deformable Beams
Using a General Higher-Order Theory

by

J. B. Kosmatka

Department of Applied Mechanics and Engineering Science
- University of California
San Diego, California 92093

1. INTRODUCTION

The fundamental vibration behavior of long slender cylindrical or prismatic beams
can be studied using the classical Bernoulli-Euler beam theory. Attempting to use this
theory to study either short beams or higher vibrational modes can lead to a significant
over-prediction of the natural frequencies since both transverse shear deformation and
rotatory inertia effects have been ignored. Timoshenko [1.2] developed a theory which
allows one to study the vibrational behavior of shorter beams (and/or higher vibrational
modes) by approximately accounting for both transverse shear deformation and rotatory
inertia, where the cross-section remains undistorted and the in-plane stresses are zero.
The resulting model is characterized by two differential equations of motion
encompassing two independent variables; the transverse deflection of the neutral axis, v
and the rotation of the cross-section measured about the neutral axis, 6. In addition, the
model requires the determination of a well-known shear-correction factor (k), which is
defined as the ratio of the average shear strain within the cross-section to the shear strain
at the section centroid. Other researchers [3-5] have attempted to show that the
magnitude of (k) should be adjusted for studying the higher mode vibrational behavior of
beams because the dynamic shear strain distribution may differ significantly from the
parabolic form of the static shear strain distribution. Cowper [6] presented a conceptual
modification to Timoshenko equations by assuming that the transverse displacement, v,
and the rotation, 8, represent the average cross-section values instead of the point-wise
values. Thus, the (k) values could be determined, based upon static three-dimensional
elasticity theory along with Saint-Venant's static flexure warping function, for a wide
variety of cross- -section shapes and Poisson ratios. A further study by Cowper [7] has

~ shown, by comparison to plane-stress elasticity solutions, that the (k) does not have to be

adjusted for higher vibrational modes.



Goodier [8) was one of the first researchers to improve upon Timoshenko's beam
theory by incorporating second-order stress effects associated with shear deformation
and cross-section warping. While this model is limited to static behavior, it does provide
valuable insight into beam behavior. Murthy [9] took a fresh look at the model of [1,2] by
incorporating additional displacements to insure a zero in-plane stress state without the
need for a correction factor (k). Stephen and Levinson [10] developed a second order
model for studying beam vibrations that combines the best features of [2], [6], and [8] with
two governing differential equations having two independent coefficients. The first
- coefficient is similar to Timoshenko's (or Cowper's) shear correction factor that depends
upon Saint-Venant's static flexure warping function, while the second coefficient
depends upon the transverse shear stress state.

Higher-order (or refined) shear-deformable theories [11-14] have been developed
for beams with thin rectangular cross-sections that correctly account for the stress-free
boundary conditions on the upper and lower surfaces as well as the parabolic shear-
strain distribution through the thickness without the need for a shear comrection factor (k).
This is accomplished by expanding the axial displacement to include a cubic distribution
through the thickness. This additional displacement is identical to the Saint-Venant's
static flexure warping function for thin rectangular cross-sections, but for general cross-
section shapes the correct expansion should be an infinite series of transcendental
functions. These theories further assume that the in-plane cross-section stresses are
negligible and that the cross-section does .net deform in it's own plane. Thus, the
possibility of dynamic deformation within the cross-section plane that occurs as a result
of Poisson coupling with the out-of-plane cross-section stress distribution (anticlastic-
type surface) is not included. The wave (or vibrational) behavior of a general prismatic
bar with an arbitrary cross-section was studied by Aalami [15] using a Rayleigh-Ritz
energy approach to the general three-dimensional problem. His numerical and
graphical results clearly illustrate the presence and importance of both the out-of-plane
shear deformation and in-plane (anticlastic) deformation for extremely short wave (high
vibrational) modes (2b/L = 3). Recently, le and Kosmatka [16] developed a static theory
for a general cylindrical or prismatic beam that incorporates both out-of-plane shear and
in-plane (anticlastic-type) deformation functions, where these functions are assumed
known. In actuality, these functions can be determined exactly for simple cross-sections
(rectangle, ellipse) by solving Saint-Venant's bending and flexure problems and
approximately for an arbitrary cross-section by applying either a two-dimensional finite
element approach [17] or a power series approach [18]. Numerical results show that the

5.2

L a' & m Ll &' @l W Ll T | | i W W

—



calculated displacements and stresses are indistinguishable from elasticity solutions for
a wide variety of beam loadings, boundary conditions, and cross-section shapes.

The purpose of the current study is to develop a general higher order theory to
study the static and vibrational behavior of beam structures having an arbitrary cross-
section that utilizes both out-of-plane shear-dependent warping and in-plane
(anticlastic) deformations. The equations of motion are derived via Hamilton's principle,
where the full three-dimensional constitutive relations are used. In addition, a simplified

- version of the general higher-order theory is also presented for beams having an

arbitrary cross-section that includes out-of-plane shear-deformation, but assumes that
stresses within the cross-section and in-plane deformations are negligible. This
simplified model, which is accurate for long to moderately short wave-lengths, offers
substantial improvements over existing higher-order theories [11-14] that are limited to
beams with thin rectangular cross-sections. Furthermore, the current approach will be
very useful in the study of thin-wall closed-cell beams (for example, airfoil-type
sections), where the magnitude of shear related cross-section warping is significant.

A series of numerical results are presented that fully validate the current model
with existing one-dimensional models as well as with appropriate elasticity solutions

.where available. The vibrational behavior of a simply-supported beam having either a

rectangular or an elliptical cross-section is studied using the Ritz method for a wide
variety of cross-section aspect ratios and beam (wave) lengths. Moreover, this problem
contains a second (higher) spectrum of shear-dominant frequencies [19-22] and thus,
the interaction of the current theory having dynamic in-plane deformations with the
second frequency spectrum will also be investigated.

2. GENERAL HIGHER-ORDER THEORY

Consider a cylindrical or prismatic isotropic beam, of length L, having a general
homogeneous cross section of area A. See Fig. 1. A Cartesian coordinate system
(x,y,2) is defined on the beam where x and y are coincident with the principal axes of the
beam root cross-section and z is coincident with the centroidal axis. To eliminate
complications associated with torsional vibrations, it is assumed that the centroidal axis
and the elastic axis are coincident. The current development is further restricted to the
study of vibrational behavior in the y-z plane only and the displacement relations are
defined as;

5.3



Thy.zt) = Mz Uslxy)
Vixy.z,t) = v(z.) + M(z,t) Vo(x.y), (1.a-¢)
Wixy.z0 =y 0z + Oz Wolxy), -

where the components are defined in three groups. The first group contains the
classical (or first-order) terms (v, y8), where v(z,t) represents the time-dependent y-
direction displacement and &z, the time-dependent rotation about x axis. The second
group includes the out-of-plane warping of the cross-section that is linearly proportional
to the local time-dependent shear resultant (Q). The third group represents the in-plane
deformation of the cross-section that forms an anticlastic surface and is linearly
proportional to the local time-dependent moment resultant (M). The three functions
(U&,Vo, Wo), which are assumed to be known, can be determined eXacﬂy for simple
cross-sections (rectangle, ellipse) by solving Saint Venant's bending and flexure
problems [23], or approximately for arbitrary cross-sections using either a two-
dimensional finite element (Ritz) approach [17] or a power series approach [18]. '

The time-dependent strain displacement relationships of the beam are defined as

3xx=§,x’ sz=z,z "‘E’,y,
Ey=Vy, TYaz=Wx+Uz, (2.a-9
Ezz-—' W'z, yXy= u|y +V.x,

where exx, eyy, and ezz are the normal strains in the x, y, and z directions, respectively,
and yyz, xz, and yxy are the shear strains. The notation ( ) x and ( ) y refer to partial
derivatives with respect to the x and y coordinates respectively. The general
constitutive relations are given as

{o}=[C]{e}, (3.a)
where the stress and strain arrays are defined as

{0}T={ Oxx» Oyy, Ozz, Tyzs Txzs Txy} ' (3.b,0)

(£}T={ Exxs Eyy €220 Yyzo Yxz Yxy } '

and the nonzero coefficients of the material stiffness matrix are given as
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Ci1 = C2 =Ca3 = (2.+26):
C12 = C13 =C23 = 4, (3.9)
Cas = Cs5 =Ces = G,

i-_lere, A and G are defined as Lama's constants.

At this point, we assume that (Q(z,0),z = 0), so that the displacement field of Eqns (1.a-

_¢) can be expressed in terms of the kinematic variables (v,6) only, instead of with a
“mixed form (v,6,Q,M). Clearly, for éxtremely short wave-length (higher vibrational)

modes the current assumption that the warping deformation is only dependent upon the
local bending moment and shear resultants, may lead to minor inaccuracies. For these
types of modes, where the characteristic length is much less than the cross-saction
dimensions, one could further assume that the warping deformation is proportional not
only to the local bending moment and shear resultants but also to their (first, second,
etc.) derivatives as well.

The local bending moment can be expressed in terms of the kinematic variables by
making use of the cross-section equilibrium equation with

M(zf = I y0zz0A = Ely 82,0,z (4.)
A
where
= (A+2
Bl _*“S’? . H, =Ly(uo_,+ Voy) dA, (4.6,)

and A and /xx are the area and area moment of inertia about the x axis, respectively.
Similarly, the local shear resultant can be expressed as

Qzh = I TyzdA = koG A(v.r+9) , (5.a)
A
where, M,z = Q,
= —1 :
Ko (1-GH,) (5.b)
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and
H, =J (Vot+r Woy)dA. (5.0)
A

Substituting Egns. (4.a) and (5.a) into Eqn. (1) results in the final form of the displacement
relations defined in terms of the kinematic variables (v and 6) only;

T(xy.2.8 = 82,0,z vx{x.),
xy.z) = z.0 + 628,29 /x.¥), | (6.a-c)
Wxy.z = y 8z, + (20,2 +6(z.0)wzx)

where _
yx(xy) = El Up(xy),
wxy) = El Vo(xy), (6.0-9

yzAXy) = ko GA Wy(x.y).
The six strain compbnentis' can be written by substituting Egns. (6.a-c) into (2.a-f);

Exx = 0z Yxx,

&y = O.zVyy,
€2z = Y0z +(Viz+ Oz ¥z,
(7.a-9
Yz = (V.z + 9X1 + Wz.y) +08.zz vy,
Yxz = (V,z + 9X,‘I/z.x) + 0,zz Vx,
Ty = 6.AVxy + Vya)-
The equations of motion are derived via Hamilton's principle
103 .
5T = J (8U- 6T~ sWedt = 0 (8)
gl

~where 8U, 6T, and 6Wg are the variations of the strain energy, the kinetic energy, and
the work of external forces, respectively. The variation of the strain energy, which can
be written in two parts, is given as;
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SU .J I (aoj'r(s}dAdz = 8Ug + 8Us (9.a)
0 JA

where the first portion represents the strain e;\ergy variation associated with bending;

L
oUg =

86,2 }T[ D11 D12]{ 9'Z}dz, (9.b)

oV.zz Dy2 D22 || Y22z
0

the second portion is associated with shear;

az, (9.0)

L
sUs=| [.z+ 59}T[A11 A12] Voz+ 6
A 86,z A12 A2l 6.zz

and the coefficients Ajj and Djj (i,j=1,2) are defined in the Appendix (A.1-6). The
constants A12 and A22 represent additional shear deformation as a result of in-plane
cross-section deformation. The variation of the kinetic energy is given as

L
5T=L Ip{sa-mw-mm-wjmdz (10)
A

where p is the mass density and () represents a derivative with respect to time; t.
Substituting Eqns. (6.a-¢) into (10), taking the appropriate derivatives with respect to
time; t, and then integrating over the cross-section; A, the resulting kinetic energy
variation is equal to;

L
-
f [ ov 1 v
50 m 0 0 U ]
|4 14
T= 20z 2 0 Bz g 11
6 5;,} 0 ko b 0 g (¢ (1)
. J1 0 0 Jp .
J, 56., 6.
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and the nonzero matrix coefficients are defined in the Appendix (A.7-12). The constants

J1, and Jp represent the additional kinetic energy associated with in-plane cross-

section deformation. The variation of the work of external forces is given as;

L
SWO = I p(Z,OSVadZ, (12)
0

where va represents the displace'ment on the surface of the beam at the point of the
applied load ( v (x=0,y=y, z,t) ).

The two differential equations of motion and associated boundary conditions are
obtained by substituting Eqns. (9.a-c), (10), and (12) into (8) and integrating by parts;

{A1 W(viz+ 6)+ A129.zz}.z - {DZZV.zz + D129.z},zz =mV+ J16,z- {JzV.z + Jzé).z -p,

(13.a)

(A11(viz + 6) + A126,22) - (0119.2 + D12V.zz}.z + {A229» z + A1v,z + 6)).2z (13.5)

= 'Ip.e-' J2V,z + (J1V + Jp.e‘.z].z - p,sz ,

where Vr is the magnitude of the warping displacement at the point of the applied load
given as T o
Yy = yy{x=0y=y) . (13.¢0)

There are four sets of boundary conditions that must be specified at the beam ends
(x=0,L). First, define either the transverse displacement (v) or the effective shear force

Q= {A1 1(V,z + 9) + A129ozz) - {DZZV,zz + D12912}»z

e (14.3)
+ JZV,z + 6.

Second, specify either the rotation of the cross section (6) or the effective cross-section
moment;

5,8
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= (D119.z+ D12V.zz}z+ SV + Jp'e..z

. {A229.zz + Atv,z + 6)).2- Py - (14.b)

Third, define either the derivative of the transverse displacement (v,z) or the generalized
moment;
M= Dzav,zz'l' D120,z. (14.C)

Finally, specify either the derivative of the rotation (6,2) or;

R = A220,22+ Arv,z + 6) . (14.9)

3. SIMPLIFIED GENERAL HIGHER-ORDER THEORY

A simplified versnon of the general hxgher-order theory can be developed by
assuming that the cross-section is rigid within it's own plane (i.e., the third displacement
group of Eq. (1) is zero (Uy, Vo=0)) and that the stresses within the arbitrary cross-section
are negligible (oxx,oyy,Txy=0). This model represents a logical extension to existing
higher-order theories [11-14], which are limited to thin rectangular cross-sections. The
displacement field will have the form;

Uxy,zt)=0,
V(ixy.z.) = z.1), (15.a-0)
wxy.z.0) =y 8(z.1) + (V(2.0,z +&z.0)yzx.y)

where

vAxy) = ko G A Wo(xy), (15.d)
and '

-1
ko = [1 - GJ' Wo.,dA ] . (15.6)
A

The resulting three nonzero strain components have the form;

S.9



€2z = ye»z + (V)Z + 0)'2 vz,
Yz = (Viz + 61 + vzy), (16.a-¢)

Yxz = (V-z"' GXV’z.x)-

The one-dimensional constitutive relations are developed by assuming that the stresses
within the cross-section are zero (oxx, dyy, Txy~0) in Eq. (3.a), then a static condensation
approach is used to solve for the remaining three stresses in terms of the corresponding
three strains;

Gzz\ E OO0} ézz
Tyz =0 GO Yz} - (16.9)
Txz ‘ 0 0 GJ\ 7xz

where E and G a're'Young's modulus and the shear modulus, respectively.

The equations of motion are again derived via Hamilton's principle (Eq. (8)), where
the simplified form of the strain energy variation is expressed as;

L

56,z

oU = V.ag

r
D11 D12} 6.z ‘ T
[ D12 D2z \ V.zz [ +(8v.z2 + 86)" A 1(V-z + e)dZ, (17.a)

0

the simplified form of the kinetic energy is given as;

5T = vz 0 Jp b [ vz (17.5)
Jo
the simplified form of the work of external forces is defined as;
L .
oW, = J p(z,t)évdz , (17.¢)
o

and the associated section constants are given in the Appendix (A.13-20).
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- The resulting differential equations of motion have the form;

{A1 1(VDZV+ e))'Z' {022V-ZZ + D129.z}-zz= mv - (JZV-Z + JZG)'Z P, (183)

A1 1(V-z+ 8). {0119!2 + D12VlZZ}lZ = 'Ip-e.' JZVnZ ’ (1 a'b)

where the three geometric and natural boundary conditions that must be specified at the
beam ends (x=0,L) include;

Geometric Natyral
4 Q= A11(V.z + 9)' {DZZV.zz + D120.z}.z +JVz+ J2'9'
V,z M = Dagv,zz + D126,z - (18.¢)
e M = D119,z+ D12V.ZZ

4. MODEL VERIFICATION

The differential equations of motion for the general higher-order theory (Eqns. 13.a,b)
and the simplified general higher-order theory (Eqns. 18.a,b) reduce identically to the
linear form of the higher-order theory for beams, developed by Heyliger and Reddy [14],
if one assumes a rigid in-plane cross-section (yx = yy = 0), negligible in-plane stresses
(oxx. Gyy, xy=0), and a cross-section that is an extremely thin (plane stress) rectangle so
that the out-of-plane shear—depéndent warpihg can be described from Saint-Venant's
static flexure warping function [23] as;

3
vz = .i(l_ : (19.a)

3 \(20

where (2b) is the overall height of the cross-section (Fig. 2) and the remaining eight
section constants are determined by making use of Eqns. (A.13-20);
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jzg_ S (19.b-i)
Diz = T3Elxx, o = T})%Plxx.
D22 = 'ZJTE’xx. Jz = 2—1—{Plxx .

Furthermore, the current equations will reduce to the well-known Timoshenko equations
of motion [1,2] by neglecting both in-plane deformation (yx = yy = 0) and out-of-plane
warping (yz = 0) effects;

{A1 1(V,z+79)},z = mv-p , (20.a)

[At1(v.z + 6)} - (D118.2).z = -8, (20.b)

where the four section constant are equal to:

A11 = kGA, m = pA, 20.c-
D11 = Elxx, Ip = plxx., (20.c-
7 wuth kgé;éa sheér coefficient that is dependenf upcimw t'hwemgﬂeometry and material
definition of the cross-section [1-7].

5. FREE VIBRATION OF A SIMPLY-SUPPORTED BEAM

The natural frequencies of a simply-suppoﬁea;f)ég?ﬁ can be obtained by applying the
Ritz method where the following displacement functions satisfy both the geometric and
natural boundary conditions; ‘

vz = 4 sir{mx{—) sinflwf), 6z = Ozvcos{mrf) sin(wt), (21.a,b)

where n is equal to the mode number,  is the corresponding natural frequency, and Q1
and Q2 are unkown generalized coordinates. Alternatively, this solution represents the
motion of a standing wave in an infinitely long beam where n=1 and L is taken as the
wavelength. Clearly, as L becomes small (or n becomes very large), the effects of local
in-plane deformation and out-of-plane warping (shear-deformation) will become
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significant. Substituting the assumed dlsplacement field (21.a,b) into the strain energy
(9.a¢) and kinetic energy vanatuons (11), nntegrate over the length; L, and substltutmg
the results into Hamilton's principle (8), will lead to the following 2 by 2 matrix form of the
algebraic eigenvalue equation;

{[K] . qu]}( Q) = (o) (22.3)
where, the coefficients of [K] are given as
Ki1 = 12'-{/41 1(5’-5[]2 + 024%)4}

+(D12- A z{ﬂg)a\ (22.b)

]|

Kiz = K21 = é{Anﬂf

Koz = !JAﬁ +(D11 - 2A12(

2|

with ,
M) = o JZ(QLE] . iﬂf) (22.¢)
We-afEr) e Jp[ﬂch)z
and
(Q)T = (Q1, @2} . (22.9)

The coefficients of the stiffne§s and mass matrices for the simplified model can be
obtained by setting (A12, A22, J1, Jp) equal to zero in (Eqns. 21.b,¢) and calculating the
remaining eight section constants using (Eqns. A.13-20).-

6. NUMERICAL EXAMPLES

Two sets of numerical examples are presented. ﬁm, the general higher-order
theory (GHOT) and the simplified higher-order theory (SGHOT) are validated with
previously published solutions over a broad range of beam (or wave) lengths. Second,
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the vibration behavior of a simply-supported beam is studied for a wide range of
rectangular and elliptical cross-section aspect ratios (b/a). See Fig. 2.a,b.
Comparisons with existing models are made so that the features of the current
development can be assessed. The required section constants for the rectangular and
elliptical cross-sections are presented in tables 1 and 2, respectively, where the in-
plane deformation functions (yx, yy) and out-of-plane warping function (yz) were
developed from Sokolnikoff's full three-dimensional elasticity solutions [23], assuming
that the Poisson's ratio (v) is equal 0.333 and b = 1. For example, the force-dependent
warping functions for a rectangular cross-section have the form

Uo(x,y) =—=R—xy, (23.a)
E Ixx

== _(y2.x2 .
Vo(x.y) >E ,xx(y x2), (23.5)

= _1yn (@ sinh(2ZYy cos(DEX)-nzy)
Wo (xy) = —1_[2+0 y3_2 yy2 4032y EV a a . (23.c
oley) = F—(SERy3 -2y 7"% — cosnazh) (23.¢)

and the constant (ko) is calculated using Eq. (5.b) as;
1
2 e 1" 1
ko = | 14— 1+v (1 -(3) ) -1 > 3)22 . (23.0)
2 (1+v) b x2 \bl = p2 cosr{nn{g-))

" This coefficient (ko) will approach 2/3 for very thin rectangular cross sections (a/b=0).
The desired form of the warping functions (yx, ¥y, ¥z) can be determined by substituting
Eqns. (23.a-0) into (6.&-/). Thus, o

Vx=—VXYy, (24.a)
vy=—5- 0222 . (24.b)

and y 2 is found using Eq. (6.1), where Wg and ko are given in Eqns. (23.¢,d).
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In the following figures, the two calculated frequencies (w1, @2) are normalized

: ,,;Nithr respect to o (= M(NE/p)/L) and plotted versus (2nb/L). For extremely long slender

beams (2nb/L=0), the lower frequency, w1, is just the Bernoulli-Euler prediction with
(Q1#0, Q2=0) , while the upper frequency,w2, will equal the "thickness-shear
frequency, wts (=VA11/lp), where the beam experiences pure shearing through the
cross-section (Q2=0) with no beam bending (Q1=0). As (2nb/L) increases, the modes
become coupled, where the lower natural frequency, w1, is predominantly beam
bending with some shear deformation, whereas the upper frequency, w2, is
predominantly beam shear with some beam bending. A second (lower) x-axis, is
included in the figures, that represents the corresponding mode number assuming a
characteristic long slender beam (2b/L=0.1).

6.1 VALIDATION STUDIES

The current theories; (GHOT) and (SGHOT), were validated by comparing the
calculated natural frequencies of a simply-supported beam having a thin rectangular
(b/a=1000) cross-section with numerous existing solutions over a broad range of beam
lengths (Fig. 3) and by comparing the calculated "thickness-shear” frequencies (Table
3) with previously published results [24]. The lower frequency w1, has four distinct lines
which represent; (1) the Bernoulli-Euler solution, (2) the current (GHOT) solution, (3) a
plane-stress elasticity solution [7], and (4) the Timoshenko solution with k=2/3 [1,2]. The
line which contains the plane stress elasticity solution also represents the current
(SGHOT) model, a higher-order theory [14], and the Timoshenko solution with k=.8551
[6]. All of the shear-deformable models are in complete agreement with the Bernoulli-
Euler solution when the beam is long and slender, but as the beam (or wave) length gets
shorter, the Timoshenko beam theory with k=2/3 is more flexible than the remaining beam
theories, and for extremely short beam lengths (2b>L) the current (GHOT) model predicts
a natural frequency that is slightly higher than existing one-dimensional beam theorles.

_This difference is clearly a result of including in-plane deformations in both the strain and

kinetic energies.

The shear-dominant frequency w2, has only two distinct lines which represent; (1)

“the Timoshenko solution with k=2/3 [1,2], and (2) the Timoshenko solution with k=.8551

[6]. The second line also represents a higher-order theory [14], and the current (GHOT)
and (SGHOT) models. The Timoshenko solution with k=2/3 is measurably more flexible
when the beam is long and slender, but converges to the other beam solutions when the
beam (or wave) length becomes very short.
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A comparison of the predicted "thickness-shear” mode frequency (Table 3) with
an elasticity solution [24] shows that the current (SGHOT) model and the model of [11]is
in near exact agreement, while the Timoshenko-based predictions are somewhat
deficient. The current (GHOT) model differs slightly as a resuit of including the kinetic
energy associated with in-plane deformations, which was ignored in [24].

6.2 VARYING CROSS-SECTION ASPECT

In the second study, the vibration behavior of a simply-supported beam was
analyzed for a wide range of rectangular and elliptical cross-section aspect ratios (b/a).
In Fig. 4, the two calculated natural frequencies using the current (GHOT) model are
presented as a function of rectangular cross-section aspect ratio (b/a). It can be seen
that (b/a) has very little effect on w1, even for extremely short beam (or wave) lengths,
but it can have a measurable effect on w2 for moderate and shorter beam lengths. In
Table 4, a comparison of the lower and higher frequencies is given as a function of b/a
for an extremely short beam length (2b=L) and one can see that b/a has a minimal effect
on the bending frequency, whereas the effect on the shear-dominant frequency can be
significant.

As a further validation of the current model, Aalami [15] predicted that w{=0.4724wq for
an extremely short beam (2b=L) having a square cross-section (b/a=1) using a
Rayleigh-Ritz energy approach on the full three-dimensional problem, which is within
0.4% of the current (GHOT) solution. The "thickness-shear” mode frequency is also
presented in Table 4, where it is seen that the frequency increases with a reduction in
the aspect ratio (wider Crc'>ss-section).' The results from the Bernoulli-Euler solution, the
Timoshenko solutions [1,2,6], and the higher-order models [11-14] were not included in
either Fig. 4 or Table 4 because these solutions do not depend upon aspect-ratio for
.rectangular cross-sections and are equal to the results given in Fig. 3 and Table 3,
respectively.

In Figs. 5-7, the two calculated natural frequencies are presented as a function of
" elliptical cross-section aspect ratio (b/a) for the Timoshenko model and the current
(GHOT) and (SGHOT) models. The shear correction factor (k) used in the Timoshenko
model was taken from [6], where the magnitude varies with aspect ratio. The results from
the Timoshenko solution (Fig. 5) show that @1 and @2 become slightly more flexible with
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decreasing aspect ratio (b/a), where a large unrealistic reduction occurs when
b/a<0.50. This reduction is apparent in short wave-lengths for the bending-dominant
frequency (@1) and in the long wave-lengths for the shear-dominant frequency (w2).
Alternatively, the frequency results using the current (GHOT) model (Fig. 6) show very

little change in w1 with b/a except for extremely short beams (2b>L), whereas the

change in w2 can be significant over the broad range of wave-lengths. It is interesting to

_ note that aspect ratio has a negligible effect on both the calculated frequencies for a

wide range of cross-section shapes (1<b/a<1000), but as the cross-section becomes
wide (b/a<1.0) the variation in the calculated frequencies, especially @2, can be
important. Finally, the frequencies as a function of beam-length and aspect ratio b/a
using the current (SGHOT) mode! are presented in Fig. 7, where the bending dominant
frequency (w1) will undergo a slight increase for extremely short beams (2b/L>2), while

the shear dominant frequency (w2) experiences a small decrease for long slender

beams.

In Tables 5.a,b, w1 and w72 for an extremely short (2b=L) simply-supported beam
with an elliptical cross-section are compared using the three different solution
approaches for a variety of aspect ratios. It is clear that decreasing b/a (wide section)
will decrease both w1 and w2 based upon either the Timoshenko results or the (SGHOT)
model, but the results using the (GHOT) model show that the w1 may actually increase
for wide cross-sections (low b/a), which is in agreement with the three-dimensional
results using Aalami's model [15]. From Fig. 6, it is apparent that as the beam wave-
length is much smaller than the cross-section dimensions (2b), then (w1) will decrease.
Finally, in Table 5.c the "thickness-shear" mode frequency is presented using the three
different methods and compared to an elasticity solution of Jeffreys [25]. Both the
(GHOT) and the (SGHOT) models are in near perfect agreement with the exact results for
a wide variety of cross-section aspect ratios, whereas the Timoshenko based solutions
(6] slightly over predict the results.

7. CONCLUSIONS

A new one-dimensional theory has been developed to study the vibrational
behavior of prismatic beam-type structures that utilizes both out-of-plane shear-
dependent warping and in-plane (anticlastic) deformations. The two equations of motion
were derived using Hamilton's principle, where the full three-dimensional constitutive
equations are used and it is assumed that the cross-section deformation functions are
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known. A simplified form of the current general higher-order theory was also presented
which includes out-of-plane shear-deformation but neglects in-plane deformations by
assuming that the stresses within the cross-section were negligible. It was shown that
the current model reduces identically to existing higher-order models of beams having a
thin rectangular cross-section, when in-plane deformations are not included.
Furthermore, the current model reduces to the Timoshenko equations when out-of-plane
shear-dependent warping Is neglected. Results from a numerical validation study of a
simply-supported beam with a thin-rectangular (b/a=1000) proved that the current model
is in near exact agreement with exisﬁng approaches over a broad range of beam (or
wave) lengths for the bending-dominant, shear-dominant, and thickness-shear
frequencies. It was shown that including the in-plane cross-section deformations and the
three-dimensional constitutive model will slightly increase the bending-dominant
frequency and greatly reduce the shear-dominant frequency for extremely short wave-
lengths. Results from a second numerical study showed that the cross-section aspect

ratio has only a minimal effect on the bending-dominant frequency even for short wave-

lengths, but the effect on the shear-dominant frequency can be significant for long
slender beams with either rectangular and elliptical cross-sections. Moreover, the
"thickness-shear” mode frequency was found to increase slightly with decreasing aspect
ratio for the rectangular cross-section, whereas the frequency associated with this mode

was found to decrease for the elliptical cross-section and be in near exact agreement

with existing published solutions.
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APPENDIX

The bending and shear related cross-section constants for the current general higher-
order theory (GHOT) are defined as

2
Dy4 = I (A+2G){(y +w P+ vE,+vE y}+2).{(y +w2(w,x+ Yy wxxwy,y}-n-s{ Vx,y"'Vy.x} dA
A

(A.1)
Diz = J 0+ 260y + vi) + ey + ||z A (A2)
. _

Dos = J (A+2G) y2 dA (A.3)

A
Al = [ 6!1 + wz,y)z + sz.x} dA (A.4)

.l
A12 = J G (1 +' Vz’y)Vy + VZ.xwX, dA (AS)

A
and

Az = I Gly2+yE | dA . (A.6)

A

The mass related cross-section constants for the general higher-order theory (GHOT)
are defined as

I = J ply+ vz dA (A.8)
A |

Ji = I pyy dA (A.9)
A
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Jp = Lﬂ(vf + vy

Jz = J pys dA
A

and

Jo = J ply+ vawzdA.
A

(A.10)

(A.11)

(A.12)

The following eigrh’t nonzero section constants are used in the simplified general higher-

order theory (SGHOT)

D11 =

D2 =

r

JA

r

JA

E(y+ Vz)sz

Hy + v2)yz dA

Dgz=IEw§dA
A

o

1+ V’Z.sz + sz.x

dA

m=deA
A,

Ip = I py+ vz dA
A
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(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)
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Jz = I pw;,? dA (A.19)
A
and

:“' " ' S = J P(}"" Wz)‘l’z dA. (A.20)
A .

 fA

oo
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Table 1 Nondimensionalized section constants for rectangular cross-sections (b/a)

1 2 10 100 1000

60373  .58046  .57019  .56977 .56976
0075697 —.018517 -.026057 -.026356 —.026359
017249 .0074311 .0056066 .0055451 .0055445
73949  .71522  .70501 .70460  .70459
—-10703 -.11659 -.12024 -.12039 -.12039
046448 .051600 .054504 .054630 .054631

1. 1. 1. 1. 1.
72405 69806  .68689  .68643  .68643
0 ~.12488 -.16484 -.16648 -.16650
-.12248 -13375 -.13837 -.13855 -.13855
.031004 .034443 .036381 .036465 .036466
.051748 .022293 .016820 .016635 .016633

with v= 0.333.

b/a__ 0.50_
A11/GA .55373
A1 2/GAb2 .10788
A22/GAb4 .11890
D11/Elxx .67878
D12/Ekx |-.12390
D22/Elxx .07343
m /(pA) 1.
Io/(pkx) .65436
J1/{(pkx) .49950
Jo/(pkx) |-.14831
Jz/(phkx) .049015
Jp/(pkxb2) | -35669
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Table 2 Nondimensionalized section constants for elliptical cross-sections (b/a) with v
= 0.333 for (a.) the general higher-order theory, and (b.) the simplified general
higher-order theory (where A12 = A22 = J1 = Jp = 0.0).

lf

1 2 10 100

b/a__ 050 — 1C 1C 1000
A11/GA |.41945 57846 64773 .67502 .67622  .67654
A12/GAb2 |.075454 015139 —.013469 -.024242 —-.024707 -.024712
A22/GAb4 |.068151 .0092408 .0042599 .0034887 .0034655 .0034653
Di1/Elx |.58259  .69203  .74236 .76257 .76345  .76346
D12/Elxx |-.12992 -12612 -10940 -.10146 ~—.10109 -—.10109
D2o/Elxx |.15757  .055736 .038845 .034518 .034354 .034352
m /(pA) 1. 1. 1. 1. 1. 1.
/(plx) |.53020  .67350  .72944  .75109 .75203  .75204
Ji/(pkx) |.49950 0.0 -.12488 -.16483 -.16648 —.16650
Jol(pkx) |-.18231 -.14465 -12231 -11293 -.11251 -.11251
J2/(plkx) |.10518  .037204 .025929 .023041 .022931 .022930
Jo/lphxb2) | 27260 036963 .017038 .013955 .013862 013861
b/a__ 0.50 1 2 10 100 1000 _
A11/GA |.42130 51852 58848 .62334 .62498  .62531
D11/Ekx |.53472 61111 66975  .69994 .70137  .70138
Di2/Elx |-.18750 —-.16667 -.14506 ~-.13257 =-.13195 -.13195
D22/Elxx |.090278 .055555 .040123 .034931 .034724 .034722
m I(pA) 1. . 1. 1. 1. 1.
I/lplkx) |.53472 61111 66975  .69994 .70137  .70138
Jo/(pkx) |-18750 -.16667 =-.14506 -.13257 -.13195 -.13195
J2/(plx) |.090278 .055555 .040123 .034931 .034724 034722
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Table 3 Natural frequencies of a short (2b/L = 1) simply-supported beam with a thin
rectangular cross-section (b/a = 1000) including thickness-shear mode

frequency (wts).

elasticity Bernoulli- __ Timoshenko [1,2] Current  Curment
_ Euler k=2/3 (GHOT) (SGHOT)
w1/wg | .4666 [7] .9069 4269 4763 4628
w2/ - A712 1.2010 1.2138
ws/og | 9069 [20] 8166 9111 9076
= n E = r 7 |
with @ -LEV-E.and g ‘\/-pﬁr .
5.26
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Table 4 Natural frequencies of a simply-supported beam (2b/L = 1) for various
= rectangular cross-section aspect ratios.

bla=1/2___ba=1___ba=2 _ ba=1000
= @1/00 4786 4744 4756 4763
w2/w0 9762 11486  1.1890 1.201
s/ 9200 9132 9120 9111

with wo = BZ E.anda),-"/z.
LYp pr
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Table 5 Natural frequencies of a simply-supported beam (2b/L = 1) for various elliptical
cross-section aspect ratios for (a.) the bending dominant frequency (w1/ay),
(b.) the shear-dominant frequency (ol ax), and (c) the thickness-shear

frequency (axs/ws).

Bernoulli- _ Timoshenko __ Current Current
] Euler 6] (GHOT) (SGHOT)
b/a=0.50 .7854 4377 .4636 4394
bla=1 .7854 4462 .4563 .4436
bla=2 .7854 .4489 .4564 4474
b/a = 1000 .7854 4499 .4566 4495
Timoshenko Current Current
i 6] (GHOT) (SGHOT)
b/a = 0.50 1.274 1.014 1.259
b/a =1 1.294 1.209 1.280
bla=2 1.301 1.264 1.290
b/a = 1000 1.304 1.282 1.294
elasticity _ Timoshenko Current Current
[3.21] 6] (GHOT)  (SGHOT)
b/a = 0.50 1.257 1.289 1.257 1.255
b/a=1 1.303 1.333 1.305 1.303
bla=2 1.328 1.349 1.331 1.335
b/a = 1000 1.339 1.354 1.342 1.336

with mo-ﬂf-ﬁ.and Wg = {pﬁ_r

5.28
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Fig. 2 A rectangular and an elliptical cross-section.
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mode number (2b/L = 0.1)

Fig. 3 Natural frequencies of a simply-supported beam with a thin rectangular cross-
section (b/a=1000) (——[6,7,11] and SGHOT,— - - - GHOT, — —-[1,2},—-—
Bernoulli-Euler).
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: 40
- mode number (2b/L = 0.1)

‘Fig. 4 Natural frequencies of a simply-supported beam with a rectangular cross-
bia=10-1000,——

section using the general higher-order theoty (GHOT), { —— !
ba=2, -——- ba=1,—--— Ha=0.5, —-—Bemoulli-Euler).
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n(2)

' ! I 1l 1 v [ 1 U |
1 2 10
mode number (2b/L = 0.1)

Fig. 5 Natural frequencies of a simply-supported beam with an elliptical cross-section
using the Cowper's version of the Timoshenko theory {6] ( b/a=1000
(k=0.91718), — — b/a=.5 (k=0.8296), — -~ — b/a=0.1 (k=0.3040),— - —
Bernoulli-Euler).
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Fig. 6 Natural frequencies of a simply-supported beam with an elliptical cross-section ... ..
using the general higher-order theory (GHOT), ( b/a=1-1000, —— ——
b/a=.5, — -—Bernoulli-Euler). - e e .
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Fig. 7 Natural frequencies of a simply-supported beam with an elliptical cross-section
using the simplified general higher-order theory (SGHOT), ( b/a=1-1000,
— — b/a=.5, — - — Bemoulii-Euler).
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Chapter 6

FORMULATION OF A NONLINEAR THEORY FOR SPINNING ANISOTROPIC BEAMS

BY
C.A. Ie and J.B. Kosmatka

Department of Applied Mechanics and Engineering Sciences
University of California, San Diego
La Jolla, CA 92093

ABSTRACT

A geometrically nonlinear theory is developed for spinning anisotropic beams having arbitrary
cross-sections. An assumed displacement field is developed using the standard three-dimensional
kinematic relations to describe the global beam behavior supplemented with an additional field that
represents the local deformation within the cross section and warping out of the cross section plane. It
is assumed that the magnitude of this additional field is directly proportional to the local stress
resultants.Using a developed ordering scheme, the nonlinear strains are calculated to the third order.
Through Hamilton's principle, the six governing equations are obtained.The finite element model is
developed using the weak form variational formulation. Numerical results for a static case show that
the model agrees with the elasticity solution up to the stress level. Results on the free vibration cases
show that the behavior of anisotropic beams are indeed more complex compared to the isotropic

counterpart, i.e. complete coupling (bending torsion shear and extension) exists for these type of
beams.

INTRODUCTION

Consider a prismatic beam of length (L) composed of an arbitrary anisotropic material having a
general cross-section (see Fig.1). For solely the purpose of simplicity of formulation, but without
loss of generality, let us assume that the material 1s homogeneous through out the entire body.
Cartesian coordinate systems (X, Y, Z) and (x, y, z) are defined on the beam where yand z are
coincident with the principle axes of the root cross-section and x is coincident with the line of
centroids. The beam is located (Hy, Hy, Hz ) with respect to the coordinate system (X, Y, Z) and

spins about the coordinate Z with a constant angular velocity (. The beam is subjected to distributed
loads px, py, and pz, which are assumed to act on the coordinate line x .
Existing beam theories have been developed by neglecting the in-plane stresses, i.e., Oyy, Ozz

and oy; , (Love, 1927). Classical beam theory further assumes that plane sections perpendicular to
the undeformed x axis remains planes (first assumption) and perpendicular (second assumption) to the
the deformed x axis. As a consequent, the shear strains will automatically vanish. To take into

“account the shear strain energy, Timoshenko (1921, 1922) developed a theory that abundant the

el



second assumption. Due to the fact that these theories were developed for isotropic materials, they
assume uncoupled global material behavior. -

Beams theories that were developed by abandoning both constraints exist. Levinson (1981),
Heyliger and Reddy (1988) and Kant and Gupta (1988) developed theories that more accurately
represent the kinematical relations by introducing shear related warping function which is proportional
to the intensity of the shear strains at the centroid. These theories were developed exclusively for
isotropic material with a thin rectangular cross section. Vlasov (1961) developed a theory that also
include the out-of-plane warping for thin-walled isotropic beams having simple cross-sections.
Bauchau (1985) extended this approach for thin-wall composite beams where eigen-warping functions
were used to model the out-of-plane shear-dependent warping. Recently, Ie and Kosmatka (1992.a)
developed a beam theory for isotropic general cross-sections using first-order warping functions that
can predict not only the global behaviors but also the local behaviors (strains and stresses).

This paper extends the development by Ie and Kosmatka (1992.a) to a more complex material
definition, i.e. anisotropic materials. For the sake of simplicity and clarity, but without loss of
generality, this theory is developed for the case of beams having homogeneous material through out
the body. A set of numerical examples is presented for beams having elliptical cross sections. Exact
warping functions for this cross section can be found in a paper by Ie and Kosmatka (1992.b). For
beams having general cross-sections and material definitions, the warping functions can be found
using a model developed by Kosmatka and Dong (1991).

Through out the body, the displacement distributions in the x -, y- and z -directions are defined as
6.2
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u(x,y,z,0=u(x,0+z 0,(x,0-y 8,(x,0+Wi(x,y,2,9) ,
v (xsy;z§t) =v(x,t)—z Ox(x,r) + W2(x)y9z’t) ’ (1.0—(‘)
W (x,y,2,0) =w(x,0+y 0,(x,0) +Ws(x,y,2,0) ,

where u, v,and w represent the displacements in the directions of the coordinate axes x-, y-, and z-

respectively and 8y, 8y and 8 represent the rotations about the coordinate axes x-, y-, and z-
respectively. W1, W2 and W3, represent the total local warping functions (displacements) of the
cross sections in the directions of the coordinate axes x-, y-, and z- respectively . These functions are
assumed to have the following form

6
Wiy, =Y Fi() wii(h2),
i=1

6
W2 (X,)’,ZJ) = Z Fl' (xvt) W2 (y,Z) ’ (2'H)

i=1

6
Wi (x,y,20= Y Fi(x,0) w3i(32),

i=1

where f r
Fix,)=] oxxdA, Fy(x,n)=] oxydA ,
Ja Ja
Fi(x,n)=| o0;xdA , Fa(x,p) = (y Ozx-2 ny) dA , (3a-f)
JA Ja
FS(XJ)=J Z0xxdA, F6(xy’)="f y 0xxdA ,
A

A

in which A is the area of the cross section, oxx, Oyy and ozz are the normal stress components and

Oyz, Ozxand Oxy are the shear stress components. FJ, F2 and F3, are the local stress resultants
(forces) in the x-, y-, and z- directions respectively and F4, F5 and Fg, are the local stress resultants
(moments) about the coordinate axes x, y, and z respectively. Further, wy; ,w2; and w3; (named
as beam warping functions) are the warpings of the cross section with a thickness dx (zero thickness)
due to individual stress resultant F; provided that the area dA is fixed against translational
displacements and rotations. Solving the boundary value problem given in Fig. 2 , in which the only
nonzero stress resultant is F 3, the warping functions wy3 , w23 and w33 will be obtained. The
others fifteen warping functions can be obtained in a similar way.

Fig. 2 A procedure to obtain warping functions.
6.3



The general constitutive relations are given as

{o) =[C]{e}, 4)
where the stress and strain arrays are defined as
{O'}T={ Oxx, Oyy, Ozz, Oyz, Ozx, O’xy) ’ (5 b)
. -4
{e)T={&xx Eyy,Cez, Vyos Yoo Yoy o - - o 0 5 i o

and [C ] is the material stiffness matrix which may have twenty one distinct stiffness constants.

um D1 mnFl Ki

It is necessary to !ransform the assumed dxsplacement field in eqns (1.a-) toa purely kinematic
field counterpart before further formulations can be furnished. For this purpose, a linear strain-
displacement relationship is being adopted, i.e.

&y = ou &y = ov c. = ow
X T3 Yy T a. 22 T A
a~6x ~ dy oz’ (6.0-f)
,=l+@. Y =9£+aw Y _g‘.’_ 9‘.‘. o
YL T 9y 9z’ ¥ oz ox Y Tox 9y’
On the basis of beam elemental equilibrium, the following assumptions are being made
Fi=-p=0, Fa=py=0, (1.0
Fl3=—pz=0, F;=0.
Also note that
Fs=F; , Fg=-F, . (T.e)

Using the above assumptions, the local stress resultants can be expressed in terms of «, v, w ,6x, 6y

and 07 (and their derivatives) by first calculating the strains using eqn (6.a-f) and eqn (1.a-c), then
using this strains to get the stresses through eqn (4), a.nd ﬁnally substituting the calculated stresses into
eqns (3.a-f) to get the following result -~ - , -

R 7 {F)= [HT {e) - B
where{F } 1sa.narray
{F}T=(F1’F20F3,F4,F5yp6}s (9)

[H] is a six by six matrix which depends on the geometry of the cross section, material properties
and warping functions, and {e } isanarray .° ,

{€)T= { e, e, €3, €4, €5, €6 )
JhmE IR g (10)
={u ’ 1% 'ez, w +ey, ex, ey, ez, .

Finally, the desired form of the assumed displacement field is obtained by substituting eqn (8) into eqn
(1) through eqn (2), resulting in the following formulation
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U (x,y,2,0) = u(x,0)+z 8,(x,0-y 0,(x,n)+yp;(x,y,2,0 ,
V(,y,2,0) = Wx,0-2 8, (x,)+p2(x,y,2,0) , (11.e-)
W(,y,2,0) = w(x,0)+y 0,(x,)+p3(x,y,2,7) ,

where

6
viy,zn= Y ek @y, i=1-3,
k=l (12.0.b)

6
Pij= Y, Hijwi, i=1-3, j=1-6 .
k=]

This displacement field will be used as the basis for the remaining development, where no limiting
assumptions are made corresponding to load type.

Ordering Scheme

To identify and delete higher order terms which are produced during the derivation of the governing
equations, it is necessary to define an ordering scheme. First of all, let assume that the beam is
relatively long and slender such that the geometric ratios of the cross section to the length (y/L, z/L) are
in the order of e which is defined to be equal to 0.2. Since x is the centroidal axis of the beam, (x/L ,
L 8( )/ox ) are in the order of one. To assign the orders of others terms, a study of the deflection
patterns of a tip loaded anisotropic cantilever beam composed of material properties of High-Strength
Graphite/Epoxy (see Table 1) has been performed using the exact results obtained by Ie and Kosmatka

(1992.b). Due to the fact that the beam spins, the order of u/L has been increased up to 2.

Table 1: Typical Material Properties of High-Strength Graphite/Epoxy.

Eqg | 145.0 GPa
Ey;=E33 10.0 GPa

- G12=0613 | 48 GPa
vVi2=V13 0.25
v23 0.40
o 1580 kghn’

Taking only up to the third order of €, an ordering scheme will be obtained in the following manner
Order 1 : B

x a)

7 L 3 , (13.0)
Ordere:
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%, z, L, ¥, 6, 6, 0, . (13.b)
| drdersz: |
i, Ay, (;vyz, Ps) , Ay, au;z, ¥3) 13.0
Ordere3:
(w1, uzz, ) A1, ;p;, ¥3) (13.d)
onlinea in-Displacement R

A geometrically nonlinear strain-displacement relationship is being adopted as follows

du l_( au) 2} (6w v l{au av) (a_w
= =3x 2|\0x] "\ox] "\ox &y =3y 2ley) oyl oy

oW ﬂ(au (av |2 (6w” - _ 0w 0V 0u 0,0V OV aw ow 4
€z =57 21\3z) "3z "%z Wz = 5y+6z dy 3z oy e 0y 0z’ ( <)
. _Ou 0w Oudu ovav, owow _ OV 0u 0udu 0V OV 0w 0w

Yex =5 ox 0z 0x 0z0x 0z Ox Yy = 5% dy O0xdy ox Gy ox 9y

Substituting eqns (l.a-c) into the above equaﬁons and applying the ordering scheme as shown in eqns
(13.a-d), the st;'ain array can written as follows

(e=x]{e], (15)

where the matrix [X] only depends upon cross sectional dependent functions and {€} is an array of
macroscopic strain measures which depends on the six variables u, v, w, 6y, Byand 67 . [X] and
{ € } can be decomposed into linear and nonlinear parts as follows

xH [x,] [x2) [x3) ], (16)
(€}=<€1}+ {€:2.1}+ {631}- 17

See the Appendix for detailed expressions of [X] and {€} .

The strain energy is defined as follows
L
v=1 I I (e}T[C){e)dA dx . (18)
0o da

Substituting eqn (15) into eqn (18), the strain energy can be written as follows
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u

L
U=%f (e} 1se1le)ar , (19)
0
where the matrix [Se] is called section constant and is defined as follows
[Se]l= j X [C] [X)dA . (20)
A

Furthermore, substituting eqn (17) into eqn (19), the following will be obtained

L
U=3 f [e2d™ ez teMise e {2+ {2 ax @)

Finally, carry out the multiplication, neglecting the term associated with multiplication between the
third order strain measures, the following expression for the strain energy will be obtained

L
v=1 f efisefede2{efise{ehp2{eNisa{en
° “2\T T 22)
{erfisa{enb2{eifsa e a .

Kinetic Energy
The kinetic energy of the beam is defined as follows
L _
T=%—I fp V.V dA dx, (23)
A

0

where p is the mass density and Visthe velocity vector which is equal to

@

w_or 3o
V=a_t"'Q‘z" r, (24)
in which 7 is the position vector defined as
I & \
r= (Hx’ H)" Hz) ;y +(X+’ﬁs y+;a 4w éy (25)
|if )

Transforming into the beam coordinate system, the position vector can be written as follows

~

€x
7= (hetx+ill, hy+y+9, hptz+wl e, 1 (26)
2 )
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where (hy , hy, h) = (Hy ., Hy, Hy) [B] T and [B] is a transformation matrix between the two sets
of the coordinate systems by rotating through Euler angles B3, B2, B in which [B] = [B1] [B2] [B3]-

1 0 0 cosBy O -sinBa cos By sinps O
Bis 0 cosB, sinBy |» B2 0 1 O |» B3= -sinPs cosPs 0 |- (27.a0)
0 -sinP; cos P sinBy 0 cos B2 0 0 1

Substituting eqn (26) into eqn (24) and making use of eqns (27.a-c), the velocity vector becomes

V= (54 0y g+ 249} Oy +y+7) &5 + (F-Qulbyr 2+ Qe t x40, + ,
(28)

(#+ ol +y+ Oy (et i) &

in which (Qx, Qy, Q)= (0,0,Q) B1T.

vernin uations ions of ion

The six governing equations for the beam are determined by applying the Hamilton's principle as
follows

e
BI (-U+T+W )dr=0, (29)

i

where U, Tand W, are the strain energy, kinetic energy and work done by external forces,

respectively.
The variation of the strain energy can be written as follows

L
dU= I ] (0T {Be}dA dx . (30)
0 A

Substituting the expression for the strain array from eqns (15) and (17) into the above equation, the
following result will be obtained -

L
6U=f (RY ({e )+ {oe 2} +{oens) ax, @31)

1]

where {R} is an array of stress resultants with forty eight elements defined as follows
(R) 'I[X]T(O) dA . (32)
A

The variation of the kinetic energy as shown in eqn (23) can be decomposed into three parts as follows

n ”
I am=] (6T, +5T1+8To) dr , (33)

1 4|

where
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€1 !

il

€

” rQ L
8Todr = f (59} m) (g} ax ar,
0

J n n

2 7]

r tmdr=r f (oq)Tma g} + (da)TmcITtq) + (60} eo)) dx dt, (34.a0)

1 i

n n L

Jr 5Todt=-j f - ({og) 1R (g1oa)T (1) dx @ .

The above equations are associated with inertia, Coriolis and centrifugal forces, respectively. Note that
{ - } indicates the derivatives with respect to time. The array {q} is defined as follows

{q}T‘:V(u, vV, W, e}" e)” ez, ?", V‘, W', ex" e)'” ez‘) : (35)

Matrix [m], [m.] and [z;] are the mass, Coriolis, and centrifugal softening -type matrices,
respectively. Arrays {f¢, } and {f;r} are the Coriolis and centrifugal force-type arrays, respectively.
Due to the fact that () is constant, the array {f,,, } will not contribute to the governing equations. The

details of the expressions can be found in the Appendix. Integrating by parts the expressions in egns
(34.a-c) with respect to time, the following results will be obtained

rQ rQ rl-
STadt =~ (6g) (z} dx dr,
Jq Jq JO
n er rf-
3Tdr=- {6q}T{Z} dx dr, (36.a-¢0)
Ju Ju JO
§ e[
8Tods = — (3qUZIA) ax ar |
Ju I3 0
where

(Z=[ml{g), (Z\=[mllq)h {Z}=-dkMg). (37.a¢)
in which [mge] = -2 [mcol- '

The variation of the external work done is as follows

L
6W,=I (px du + py dv + p, Ow) dx . (38)
0 .

Substituting eqn (31), eqns (36.a-c) and eqn (38) into eqn (29) and taking any necessary integration by

- patts, the boundary conditions and the six governing equations will be obtained as follows

Boundary Conditions :

. Specify u or Ny, which is equal to

6.9



. Ny= Rl-R;+R19V'+R25W'+R319x+R379y-R439z+27+77+27'f7 . (39.9)
Specify v or Ny, which is equal to

N, = Ry-Rg+Ry o' +(R13+2R0)v'+(R21+ Ro6)W ' +(R1 7+ R32)0 s+ (R21* R33)6,-

(Rag+Ra4)0;+R220x+Ro30y+Rob+ Zs+ Za* 2t . 59
Specifywoer which is equal to
Ny= R3-R;+R25u'+(R21+R26)v'+(R,3+2R27)w'+(R1 8+R33)8x+(R27+R39)6,~
(Ra6+Ras)0,+Rosbs+RooBy +R309z+29+79+29 S (P
Specify 0 or My which s equal to
M= R4-Ryg+Ry2v'+R2gW'+ R348+ RaoBy-RaeB:+Zy 6*71 o*Z1o-fi0- (39.9)
Specxfy 6}, or My which is equal to |
M = Rs+Ry-R, 1+R23V +R29W +R359x+R4 19y-R479z+21 1"‘71 1+Zl 111 | t3;9-€)
Specify 8, or M; which is equal to
M, = R¢-Rg-R '12+R24V'+R30W'+R369;+R429y-R4891+212+71 2+Z1212 - (39.)

Specify u', v, w', 8'y, 8'y, and6'zor My , My , Mw, Ry ,Ry ,andR; , respectively , which are
defined as follows , :

M,=Rq, M,=Rg, M,=Ry,

, , (40.a-f)
Ry = Ryo, Ry =Ry, R:=Ry3.
The six governing equations :
GN
Mo (@oZ2ifilne0, B (Za+Zz+Zz £=0, L2 (z4Z )0,
(41.af)

M (2T 20, D N AzsoZoeZsfib0,  FN Az Ze 20,
where
N -Ryu'{R17+ R32)v'{R1g+Ra3w'{R14+R15)0x-R330,+R328,+R350,-R360, ,

N, = Ry+Ry3u *(R20+R44)V +(R26+R45)W +RyBxHRig*Rag*Rasly- -
(R14+2R44)0;+RacOx +R479y ;

N, = Ry+Ra7u H{Ry1+Rag)V' HRy7+Rao)w '+ R330HRy s+2R30)0y-
(Rl6+R38+R45pz+R409;+R4262' .
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FINITE ELEMENT MODEL

" The finite element model is developed using the weak form formulation. The six variables u, v,w
Bx, Byand 67 are interpolated using the expressions of the form

5 5
u v w
uidy v=Y vid , w=Y wid,
=1 i=1

=
1
n e

P

i i
& X 2 X n Yy
ex=zei¢1, ey=zei¢i’ 62
i=1 i=]

(43.a)
0 o,

n
M -

i=1

where the variables u,0, 6y and 6 are interpolated using four-node Hermite polynomials and v and
w are interpolated the same way as u except that one additional node being added in the mid-length of
the elements. Substituting the above equations into eqn §29§, the associated governing equations (the

equations of motion) related to the nodal displacement {Q } can be written as follows
) (M) {QHCHOI+(K] + [KnilHK A Q) = {Fe)+{Fep (44)
where
(O = { (u1, ua, U3, ug), (v1, V2, V3, Va, Vs), (W1, W2, w3, Wg, Ws), (45)

(6F, 85, 05,03) (67, 03,067, 63), (67, 63, 64, 64)},

[M] is the mass matrix, [f'] the gyroscopic matrix, [K} ] the linear stiffness matrix, [Kn; ] the nonlinear
stiffness matrix, [Kf] the centrifugal stiffness matrix, {F, e} and {Fc} the force vectors related to the
external and centrifugal loads, respectively.

NUMERICAL EXAMPLES

In this section, numerical examples are presented for beams with elliptical cross section composed
of an anisotropic homogeneous material (see Fig. 3.a) where (a) and (b) are one-half of the major and
minor dimensions of the cross section, respectively. Through out these examples, a value of (b/a)
equal to one half has been chosen. Furthermore, the beam is assumed to be composed of a single set of
unidirectional high strength graphite/epoxy fibers, which is a transversely isotropic material that has
five independent constants (see Table 1)

P4
[

28 1

Fig. 3.a A tip-loaded cantilever beam



To achieve orthotropic and/or anisotropic beam behavior, the material reference frame (1,2,3) is

oriented relative to the beam Cartesian coordinate frame (x,y,z) using reference angles (f) and (a),
which are defined as rotations about the positive x-axis and the positive material 3-axis, respectively.
See Fig. 3.b, where the transformation relation between (1,2,3) and (x,y,2) is equal to

1 l cos(a)  sin(a) cos(B) sin(a) sin(B) |[x \
21 = -sin(a)  cos(a) cos(B) cos(a) sin(B) \ ¥ | - (46)
3 ! 0 - sin(B) cos(p) z ! :

The resulting 21 unique material compliance coefficients (Sjj, i,j=1-6) are determined using standard

transformation techniques (Lekhnitskii, 1963). Numerical examples for static and free vibration cases
are presented for the case of a = f§ = 30 degrees, L/(2a) = 10. The model predicts the coupled

displacements and stresses exactly.

1: ic, Nonspinni :
Consider a cantilever beam fixed at the root with a single tip load P, (see Fig. 3.a). Unlike the
isotropic counterpart, results show that all six stress components are present. Fig. 4.a-j show the
countour plots of these stresses.

* Normal Stress oy :
Fig. 4.a-d show the changes of 0y, distributions in the cross sections at different values of x.
Dotted lines show negative stresses. At the tip (Fig. 4.a), unlike the isotropic counterpart (in which
this stress is equal to zero), 0y, distributes in a such a way such that the resultant is equal to zero.

This stress will gradually becomes less dominant as the value of (L-x) increases (for cross sections
closer to the root). Fig.4.b shows the stress distribution for a value of (L-x)= b, Fig.4.c for (L-x)=
2b, and Fig.4.d for (L-x)=L (at the root) where the stress distribution is dominated by the “classical”
normal stress distribution.

In-Plane Stresses 0y, 07 and Oy,F |
Due to the anisofropy of the material, these stresses exist. Because the shear forces through out the
length are constant, these stress distributions do not change with respect tox. As they have to be,

Oyy and o, (see Fig. 4.¢,f, respectively) vanish at two locations, i.e.at y =za,z=0 for oyy and
at y =0,z=1b for 05, . Likewise, Oyz vanishes at four locations,i.e.at y =12,z=0 andat y
=0,z=1b (seeFig4.g).

Transverse Shear Stresses 07y and Oxy @

Fig. 4.h,i show the countour plots of transverse shear stresses 0z and Oyy , respectively. Fig.4.j
shows a qualitative vectorial scaled plot of the resultants between these two stresses. From this figure,
it is interesting to see that the stress distribution clearly does not resemble that of an isotropic
counterpart (i.e. a paraboloid with a maximum occurring at the centroid). Instead, the distribution is
nonsymmetric with a maximum occurring on the outer edge.

Fig.3.b Orientation of material fibers (1,2,3) relative to (x,y,2).

fiber direction
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Fig. 4 Stress distributions of a tip-loaded cantilever beam.
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For free vibration analysis, consider the same beam as in example 1 but with free-free boundary

condition. Table 2 shows the mode number, the values of A; (no dimension) and information about
the mode shapes, where

- A 114yy
& 2nL? pA “n

expected, the first six modes represent rigid body modes. For lower frequencies, couplings exist
mainly between bending and torsion. Complete couplings (bending, torsion, shear, and extension)
exist for higher frequencies.

f; is the i-th frequencies (in hertz), and I,y is the moment of inertia with respect to the y axis. As

Table2:
Mode A Information about the mode shapes
Number
1to6 0 Rigid body motions
7 8.33 First bending in the x-0-z--plane with little torsion
8 16.42 First bending in the x-0-y--plane with little torsion
9 22.66 Second bending in the x-0-z--plane with little torsion
10 42,93 - Third bending in the x-0-z--plane with some torsion
11 43.40 Second bending in the x-0-y--plane with some torsion
12 49.99 First torsion with some third bending in the x-0-z--plane
13 69.80 Fourth bending in the x-0-z--plane with some torsion and little extension
14 80.69 Third bending in the x-0-y—plane with some torsion
15 94.53 First extension with some torsion and little bending in the x-0-y--plane
16 99.45 Second torsion with little bendings in both planes
17 101.58 Fifth bending in the x-0-z--plane with some torsion
18 125.76 Fourth bending in the x-0-y--plane with some torsion, little extension and

little fourth bending in the x-0-z--plane
CONCLUSION

A formulation of a nonlinear theory for spinning anisotropic beams having arbitrary cross-sections
has been developed. The displacement field is assumed to compose two parts, i.e. the standard
kinematic relations (expanded for a three-dimensional case) to describe the global beam behavior and a
supplementary additional field that represents the local warpings within and out-of the cross-section
plane. It has been shown that, in the most general case, these beam warping functions may be as
many as eighteen. Furthermore, it was assumed that the magnitude of this additional field is directly
proportional to the local six stress resultants.

Using a weak form finite element based numerical technique, preliminary numerical results for a
static and a free vibration cases have been obtained. These numerical examples show that the model
can predict the displacements and the stresses exactly for a shear tip loaded cantilever beam. Due to the
anisotropy of the material, stress distributions do not resemble the isotropic counterpart for all six
stress components. Numerical results on the free vibration case (a free-free beam) show the coupled
mode shapes of bending, torsion, shear and extension, especially for higher frequencies.

The authors wish to acknowledge to the support of this research by the NASA -Langley Research
Center with R. C. Lake as the contract monitor.
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APPENDIX
The matrix [X ] is decomposed into three parts as follows

1 ©129313 P13%P312 D113 Pi12 |

- 2229323 P223%P322  P12,3 149122

- 2329333 92339332 1+@133 P32 ) i
- ©24,2934,3 92430342 Y+P14,3-2P14,2 l = = = - -
Z 92529353 P253tP352 @153 D152 -1 -=--

X T=| Y P62P363 Me3tPrez P63 P62 | [y2 i T T 1-=--1
e - - - P31 P21 --—1--
P12 - - - P32 22 | 0 | m=-=-- 1 -
$13 - - - P33 P23 = == ==1
P14 - - - P34 P24
P15 - - - P3s P25
L 16 - - - 6 P26 _|
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- - - - 21,3 921,2
- - - - ©22,3922,2
- - - - 923,3$23,2
Z - - - $24,3 924,2
- - - - ®25,3 925,2
- = - - $26,3 26,2
- = - - P31,3931,2
- = - - ©32,3P32,2
- - - - $33,39P33,2
y - - - P34,3 P34,2
- = - - P35,3P35,2
- = - - P36,3 P36,2
= @®31,2 21,3 P31,3921,2 — -
- @322 “$22,3 P32,3-922,2 ~ -
[XSI]T= — P332 P233 P333-P232 - ~ (A.1.0)

—P342 9243 P34,3P242 Z y
~ ®352 -P25,3 93539252 -~ -
- 36,2 -P26,3 P36,3P26,2 — -
- - Q113 91,2 1 -
- - ®123 ®12,2 - -
- = ®$133 ®13,2 - -
- = Y43 P14,2 - -
- - @153 P15,2 z -
- = @163 P16,2 -y

-®Q112 - ®11,3 - 1
- 912,22 - ®12,3 - -
- Q132 - ®13,3 - -
- 142 - P14,3 - -
-P152 - P15,3 - b4
- %162 — ®16,3 -y __

where ( ),2 and ( ),3 indicate partial derivatives with respect to the coordmahe axes yand z,
respectively. ermlarly, the array {€} is also decomposed into three parts as follows

{€H = (u ’ v '629 w +ey96;:se)"aez'a u ’ V ez; w +ey,ex:ey’ez soa 0; 09 0, 0’ Oa 0: 0, O;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (A.2.9

0,0,0,0,0.5 w2+ (w], 0.5 (6 F+ (6.,

(e2)'=(0,0,0,0,0,0,0,0,
os[e,)2+(ey)2] 9,6, v 85, w'85,0,0,0,0,0,0,0,0,0,0,0,0, (4.2.5)
0.0.0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

kJ_wooooooooooooooooovuvb@)
v(w +9y), v6,, v 9,, v ez,w u', w(v 6 ) w(w +0 )
w5, wy, woy, 0,4, 0(v-8,), €.(w'+6,), 8.8, (A.2.0)
8:0,, 8,0,,0,u', 8,(v-8,), 8,(w'+8,), 6,6, 6,8y, 8,0,
B, -0v-0)), 8{w'+6,), 8.6;, -0.8,, 8,8, .
Matrices [m] and [m,] are defined as follows
6.16
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[m]= ] p (1} {1\ {ma) {ma)Trims )} (m3)T) dA (4.3.9

[m]= f p {Q:l{ma) (m3)T{ms3) {m2)T)+Qy({m3) (my T4y ) {my)T)+

(A.3.0)
Ql(my) {mo)T{ma} {m1)) } dA,

where
{m1)7<(1,0,0,0, z+q;3, -y<P12, P11, P12, P13, P14 P15 Pr6) 5
{m2}T#09 lr 0’ -Z, P23, P22, P21, P22, 923, P24, P25, QZG) ’ (A.4.0-C)
{m3>T=(O’ 0’ 19 Y P33, -P32, P31, P32, P33, P34, P35, %6) .
Matrix [k] is defined as follows
AL %([ks] + [ks]r) ’ (A.5.9)
where

k) = f p {(Q7+02) (my ) {my )T (0.2+Q2) {ma} (ma)TH{0,2+Q2) (m3) {ms)T

A.5.b
-20,Q{ma} {m3)1-20,Q {m; ) (m3)T-2Q,Q,{m; ) {m2)T } dA . =)
The array {fc7} is defined as follows
(e f p {(07+07) (hevx) (my3(02402) (hy+3) tma} {02407 (het2) {ms -
0 (Qh+ 2 Oy (hy+y) (1 - Oy (Qul e+ 2)+ Qb +x) {ma)- (A.6)

O Q(hx+x)+Qy (hy+y)) {m3) } dA .
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Chapter 7

Extension-Bend-Twist Coupling Behavior of Thin-Walled Advanced Composite Beams with
Initial Twist

J. B. Kosmatka®
Department of Applied Mechanics and Engineering Science
University of California, San Diego
La Jolla, California 92083

Abstract

An analytical model is developed for assessing the
extension-bend-twist coupling behavior of nonho-
mogeneous anisotropic beams with initial twist. The
model is formulated as a coupled two-dimensional
boundary value problem, where the displacement
solutions are defined with pretwist-dependent func-
tions that represent the extension, bending, and
torsion, and unknown functions that represent local
in-plane deformations and out-of-plane cross-section
warping. The unknown detormation functions are
determined by applying the principle of minimum po-
tential energy to a discretized representation of the
cross section. Numerical results are presented that
tully verify this approach and illustrate the strong
extension-lwist coupling behavior present in
pretwisted beams with thin-wall laminated composite
cross sections as a function of ply angle, initial twist
level, and initial twist axis location . Cross-sections

" analyzed include; thin laminated rectangles with ei--

ther asymmetric or symmetric ply stacking se-
quences and a thin-wall single cell D-section com-
posed of a graphite/epoxy woven cloth.

Intr ion

From tilt-rotor aircraft to jet turbines, rotor
blade manufacturers are incorporating fibrous com-
posite materials into their current designs as a
means of reducing weight and costs, and controlling
deformations. In a general sense, a laminated com-
posite rotor blade can be described as an elastic
beam that exhibits generally anisotropic behavior,
where it's shape is generated by rotating a nonho-
mogeneous airfoil (irregular) section about an initial

twist axis. The beam can have a helical line of cen-

troids, since the section centroid is not required to
lie on the initial twist axis. Thus, the application of a
simple extension load will result in elongation,
bending, and twisting of the beam. This coupled
behavior is dependent not only upon the material
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property definition of the laminated section, but also
upon the initial twist axis location and the initial
twist level.

Exact analytical solutions to this type of -
problem do not exist and are generally intractable.
Fundamental studies [1,2] derived the governing
two-dimensional coupled equations for the exten-
sion-torsion behavior of pretwisted and spiral
(helical) isotropic bars. Closed-form solutions for
the extension-torsion behavior of helical isotropic
bars with simple (ofi-centered circle and ellipse)
cross sections were developed in [3] using a dis-
placement formulation. Numerical results clearly illus-
trate the interaction between pretwist and local
cross-section deformations. A recent siudy [4] de-
veloped an analytical model for pretwisted isotropic
beams with an arbitrary cross section, where the
Ritz method is applied to determine the pretwist de-
pendent in-plane deformations and out-of-plane
warping of the cross-section before studying the
extension-bend-twist coupling behavior. Numerical
results demonstrated the pronounced eftects that
pretwist and initial twist axis location have on the
section deformations, extension-torsion coupling
behavior, and section properties of solid and thin-
wall multi-cell airfoil sections. Investigators have
developed other isotropic models based upon either
thin shell theory [5] or approximate technical beam
theories (for example, [6-10]).

Pure bending of pretwisted isotropic bars with
simple homogeneous sections has also been
addressed by investigators. Maunder and Reissner
[11] developed approximate solutions using a thin
shell theory for narrow rectangular cross sections.
Goodier and Griffin [12], using a stress formulation,
developed an elasticity model assuming that the so- -
lution can be represented by a pretwist dependent
power series. Results using the first few terms of
the series for a thin elliptical cross section show
that curvature will increase signiticantly for the stiff
plane of the cross section, but the curvature in the
soft plane remains virtually unchanged.
research on

Independent of the above

- pretwisted isotropic beams, investigators have de-

veloped solutions for the behavior of prismatic
anisotropic beams with a nonhomogeneous irregular
cross section. Initially, a mathematical formulation

1.1



with an existence proof was derived based upon an
assumed displacement field, but no numerical results
were given [13). Approximate solutions, which in-
voive solving a coupled two-dimensional elasticity
model via the Ritz method, have been developed
[14-16]). In [14], the solutions are determined by un-
coupling the local cross-section deformations from
the global beam deformations and solving both
simultaneously, whereas in [15,16], the global beam
solutions are derived first using Saint-Venant's
inverse method and then only the local in-plane and
out-of-plane section deformations require
calculation.

The objective of this paper is to develop an
analytical model for studying the extension-bend-
twist coupling behavior of nonhomogeneous
anisotropic beams with initial twist. The model is
formulated as a coupled two-dimensional boundary
value problem, where the displacement solutions are
defined in their most general form including: (1)
pretwist-dependent functions that represent the ex-
tension, bending, and torsion, and (2) unknown
functions that represent the local in-plane deforma-
tions and out-of-plane warping of the cross section.
The unknown deformation functions, which are as-
sumed to be proportional to the local axial strain,
bending curvatures, and lorsion twist rate, are de-
termined by applying the principle of minimum po-
tential energy to a discretized representation of the
cross section (Ritz method). Finally, the extension-
bend-twist coupling behavior is studied using the
equilibrium equations of the cross section. This
model has direct applications to both highly
pretwisted aviation propellers and jet turbine (turbo-
fan) blades, which have thin built-up solid laminate
sections. and composite lilt-rotor blades, which
have thin-wall closed-cell laminate sections.

Three sets of numerical results are presented.
Initially, the extension-twist behavior of a flat
{untwisted) laminated plate with an asymmetric
(angle ply) lay-up is analyzed to verify that the cur-
rent approach reduces to classical laminated plate
theory. Second, the exiension-bend-twist behavior
of a thin solid laminated strip with initial twist is
studied for different ply angle orientations and
stacking sequences (asymmetric, symmetric),
pretwist levels, and initial twist axis locations.
Finally, a pretwisted beam having a thin-wall D-sec-
tion composed of a graphite/epoxy woven cloth,
similar to the effective structural section of a tilt-ro-
tor blade, is analyzed to illustrate how ply orienta-
tion and initial twist can be combined to produce ei-
ther maximum or minimum extension-twist coupling
behavior.

heoreti rivali

Consider a long elastic beam, of length /, where
the lateral surface is generated by rotating an
arbitrary nonhomogeneous cross section about an
initial twist axis (z-axis). This cross section is de-
fined using (n) triangular and/or quadrilateral subre-
gions, where each subregion can have a unique ho-
mogeneous anisotropic material definition. See Fig.
1. The beam may have a helical line of centroids
since the modulus weighted section centroid is not
required to lie on the initial twist axis. A space-fixed
orthonormal vector set (x,y,2) and a curvilinear co-
ordinate system (£,7,2) are used to analyze the
beam, where ¢ and n align with the x and y axes at
the beam root (z=0), but rotate with the section
about the initial twist axis. Thus, both the section
geometry and the material properties are functions
of Zand nonly. The two coordinate systems are
related using

fc’ \ _[ cos{az) sin(az) }‘ x}| (1)

\Uf- -sin{aez) cos{az) ly

where o is the initial twist per unit length. The con-

stitutive relations for the itf subregion of the cross
section, are given as

{am} {Cm-}{e(’)} .

J
(2.a-b)

R
{eu‘;;:! s(')q’a“l},

]

where the ifM stress and strain vectors are given as,

{o’(’)}T=

(2.9)
{6;‘;—'(/), 67777(/)' SZZ(,), Ynzm, Y§z(l)’ yén(/) }

and the material stifiness [C(] and compliance

(8()] matrices for each of the subregions in the -

curvilinear frame (&,7,2) must obey [C{¥] =[S()}-1.
These matrices will be fully populated with up to 21
distinct coefficients when the subregion material
classification is either anisotropic or the subregion is
composed of fiberous composite materials, where
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the principle fiber directions do not align with any of
the curvilinear coordinates.

The applied stress distribution on the ends of
the beam (2=0,) is statically equivalent to an applied
extension force P that acts along the initial twist
axis and a general moment M that can be de-
composed into components My, My and Mz about
the x, y, and z axes, respectively. Furthermore, the
ends of the beam are free to warp so that the twist
is uniform along the length. A general moment is
required for two reasons; (1) P does not act
through the centroid and thus effective bending
moments are produced, and (2) the solutions to the
bending and torsion problems are coupled for gen-
erally anisotropic beams due to the presence of the
C34 and C3s terms in the material stiffness matrix.
Assuming that the body forces are negligible and a
stress free condition exists along the lateral surface,
then the stresses within the cross section must
satisty the following equations of equilibrium:

n

2 [ oz dA M= P,
(%

n f'
> oz gA ) = M:
i=1 JA(’)
r (B-a'd)
n
o220 gA D= Mn .
i=17 4 (M
n
S| (s nezoa - u,
i=1 A1

where, Al) is the area of the ¥ subregion and Mg
and Mp are components of the applied moment
about the S and n axes that satisty

| #e
| |

. The displacement distribution for each subregion
can be written in its most general form as global
functions that represent extending, bending, and
twisting of the beam and local functions that
represent warping of the nonhomogeneous cross
section;

-

cos(az) sin(az) |’ Mx \

(4)
sin(az) cos{az) |\ My |

U = ugl2) -n6ol(2) + yy OV,

v = vo(2) +860(2) + W, D, (5.2-0)

wl) = wy(2) -Eon(2) + no&(2) + v, @,

where up, vo, Wo represent z-dependent displace-
ments in the , , and z directions, respectively, ¢¢,
¢n, and 8o are rotations of the cross section plane
about the , 1, and z axes, respectively, y1 and y?
are deformations in the section plane (including
Poisson contractions}, and w3 describes warping
out of the section plane. These functions (y1(!),
w2 (D w3(1) are assumed to; (1) be directly propor-
tional to the axial strain, bending curvatures, and
twist rate within the cross section, (2) be uniform in
the curvilinear coordinate frame (function of £ and n
only), and (3) have first-order continuity across the
subregion boundaries.

Assuming a two-dimensional strain state, one
can derive the final form of the z-dependent
functions as

ug(2) = ~—(az}cos({az) - sin(az)}

- 511 - cos(az) - (az)sin(az)\ .
2! |

vo(2) = E{(az)cos(az) - sin(az)}
ol

+ 2’1 - cos(az) - (az)sin(az)} '
2
¢ (6.a-)

wo(2) =€z,

(2) = %{1 - cos(az)‘ + -’;;l{sin(ozz)1

I |’

®

¥

0n(2) = i%”\H ) cos(az)} ’ ’—;é{sin(az)} ,

8o(2) =02,
where, e, xZ, xn, and 6 represent the extension

strain, the bending curvatures of the beam in the §-z
and n-z planes, and the elastic twist per unit length,
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respectively. The current approach reduces to the
models in [3, 4, 12] for isotropic materials.

The #1 strain components are found using the
displacement relations from (5.a-c) and (6.a-/)

g-(’) = 1,]1 .é(l)’ snn(’) = V]z'n(’),

) = e- Exz+ iy + aDys()

Ynz(l)-;- 65+ V’3.nm + a(w1(i’ +DW2(')) ) (7a-f) ”

yézm =-6 g +|;[3‘g_(’) - a(wz(/) 'DW*](I)) s

7571(’) = W1'TJ(I) + WZ.[;'(’) .

where, the symbol D is an operator defined as

D=nb .28 (7.9)
HJ, 5 (7.9

rmination of the L | Cr ion
formation

The local deformation functions for an arbitrary
nonhomogeneous anisolropic cross-section are
determined based upon the principle of minimum
potential energy along with a discretized represen-
tation (finite element modeling) of the cross section.
Although the displacement field is fully three-dimen-
sional (Eq. 5.a2-¢), it is explicit in the z direction, thus
only the two-dimensional cross section needs to
analyzed. This approach has been applied success-
fully to such problems as torsion and flexure of
prismatic isotropic [17], monoclinic [18], and
anisotropic beams [15,16], and the extension-tor-
sion coupling behavior of pretwisted isotropic
beams [4].

The local deformations must be determined for
each of the four cases (viz. extension, bending
curvatures in the £-z and n-z planes, and the elastic
twist rate). Standard isoparametric finite element
methodology is employed so that most of the details
can be omitted. Each material of the cross section
is approximated using either quadrilateral or triangu-
lar subregions where the local deformations are rep-
resented as

(@
#

vy =liN(')(§ n }

ol
|
AL {N”(b n R‘P ')} 8.2-0

oo

where [N((Em)] is a bi-quadratic isoparametric in-
terpolation function and {¥1(M}, {¥2(1}, and {¥3(
are nodal displacements on the if
boundary in the &, n, and z directions, respectively.

The strain veclor (Eq. 2.d) of the ith subregion can
be written in matrix form in terms of the unknown
local detormations and the extension strain, bend-
ing curvatures, and elastic twist rate by substituting
the interpolation functions (Eqns. 8.a-c) into (Egns.
7.a-);

Lot o eol LTl
\5()! B h [fb‘b’ (9)

where
B :
0 N (;,T)).r] 0

- (n .
Nz aoNEm N,

Do, @ s
aonGm  -anEm N

_ M Ema N o
) (10.a)
Lol [yl Lo LoplL
= , (10.b)
R R R B U IR R ¥
0000 ]
0000
[fb]= 1500 (10.¢)
000¢
000-m
0000

and
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;
{b ={e. Kz. Kn. e} : (10.d)

Similarly, the displacements (Eqns. 5.a-c) could also
be written in matrix form in terms of the local cross
section deformations and the vector {b}.

The principle of minimum potential energy is given as

n
51T = 35U - 5w = 0 (11)

=1

where n is the number of subregions, sU(7 is the
variation of the strain energy with respect to the

unknown local deformations of the " subregion
given by

L
sy =J
0
(12.a)

and §We(i) is the variation of the work of external

forces of the it subregion that results from the
applied tractions on the beam ends;

L
[ 58(:)} {cm}{sm} dallgz

A(')

4 ’(/) 0] . i .
SWe' = \7526"/‘ + TnzfV2 +0;70V3 } {z=L)
Ja®

(12.b)

]

frm T WUt m]

( (3
- \ 526% + T 00, +0,,0y, ’ .
[t}

dA
(2=0)

JA

The virtual work expression will reduce to zero since
both the stresses and the local cross section de-
formations are assumed to be independent of the
axial coordinate (z). A set of linear algebraic equa-
tions for determining the local cross section defor-
mations in terms of {b} is obtained by substituting
Eqgns. (9) and (12.a) into Eq. (11) and carrying out
the integration over the beam volume. Wriling this
set of equations for the #f subregion;

[K(o}{ tpm} +[Fg):|{b‘ - {o} (13)

where the stiffness matrix is defined as

T, .
{KU)} =L ‘:B(')] [c('IBm} dAl)  (14.a)
n

and the force matrix is presented as

o
{5‘,”] - L [B(D} [c(’)ﬁrb] aAl). (14.b)
A

Since both the stiffness matrix ( [K(7] ) and the
force matrix ( [Fp(?)] ) are linearly dependent upon
the beam length (L), then the calculated local de-
formations functions are length independent and
(L) can be dropped from the above equations.

The matrix equations of Eq. (13) are assembled
into a complete model of the cross section using
standard finite element procedures. Unit solutions
for the local deformations (¥1,¥2,¥3) can be
calculated for each of the four cases of {b} by
setting the appropriate value in the array {b} equal to
unity and the remaining three o zero. Thus, the cal-
culated deformation functions can be written in ma-
trix form as

—
’L]J(’)\ = l}lm E{b} . (15)

|
-

where each of the four columns of [#(%)] are the unit
local deformations associated with the four cases of
{b}. Thus, the calculated functions for the first case
represent the local deformations as a result of ap-
plied unit axial strain (e) with dimensional units of
length per unit axial strain. Similarly, the second
and third cases define the local deformation associ-
ated with applied bending curvatures (xz, xp) with
dimensional units of length per unit bending curva-
ture. Finally the fourth case describes the local de-
formation from applied twist rate (8) with dimen-
sional units of length per unit twist rate. Similarly,

the stress components of the ith subregion can be
expressed in terms of a set of unit stresses and {b}
by substituting Eqns. (15) and (9) into (2.3)

o) - M{b J (16)

where
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Relations could also be easily developed for the

displacements (u(?, v()), w(i)y in terms of a matrix
of unit displacements and {b).

A two-dimensional finite element program was
written where the cross section is discretized using
8-node quadrilateral elements and 6-node triangular
elements. The cross section is defined in a local
element coordinate system (&g, ne) that can be
arbitrarily positioned relative 1o the initial twist (2)
axis of the curvilinear reference frame (Z,n,z) using
offsets (&j, n). The discretization of thin rectangu-
lar cross-section (¢/t=10)} using 40 quadrilateral ele-
ments is presented in Fig. 2.

Behavior of the Pretwisted Beam

The general behavior of the pretwisted beam
can be studied by making use of the calculated
stress distributions (Eq. (16)) and the equilibrium
equations of the cross section (Eqns. (3.a-d)).
Thus,

e P
ki ka2 k3 ki
ko ko2 ke kg f] N8\ | M (18)
kiz ko3 Kaz kag || Xn M
kig Koa Kza kaa P M,

where the matrix [k] is symmetric based upon re-
ciprocity. For an untwisted isotropic beam, the
twist rate is independent of axial strain and bending
curvatures {k14=k24=k34=0), the diagonal terms _
equal the nominal extensional stiffness (ky1=EAp),
bending stiffnesses (k22=Elnno. k33=ElzZ0), and
torsion stiffness (k44=GJp). zIZhe remaining off-di-
agonal terms, which couple extension and bending,
are the first and second moments of inertia that re-
sult when the local axes (5,7} are not coincident
with the principal axes of the section (k13=EApo,
k12=-EAgo. k23=-Elzno). These last three terms can
be used o locate the centroid and principal axes of
the section. For beams exhibiting generally
anisotropic behavior as a result of material definition
or from the presence of initial beam twist, the ma-
trix relation of Eq. (18) will be fully populated.

The behavior of a "constrained” nonhomo-
geneous anisolropic beam with initial twist can be
studied by using Eq. (18) directly, where forces
and/or moments are applied to restrict global beam

behavior, but not cross section deformation. For
example, to place a beam in pure torsion with no
axial strain or bending (8 =0, e = KE=Xp= 0), one
must apply an axial force and a general moment with
bending moment components that satisty

_P_=_k1_4, £=£3£, _Aﬁ’.a_k_?_‘l, (19.a-¢)
Mz ksa Mz Kkgg Mz kag

Positive (negative) ratios of (19.a) are associated
with the application of an extension force to keep
the beam from contracting (extending), whereas
nonzero terms of {(19.b,c) signify that the general
moment is acting about a vector that is skew (not
perpendicular) to the cross section. Similarly, to
place a beam in pure extension with no bending or
twisting (e = 0, 8 = x¢ = xn = 0), one must also apply
a general moment with components that satisfy

Ms bg Mn kg Mz ki

Py Pk Py
These ratios agree with the equations developed by

Lekhnitskii [19] for untwisted generally anisotropic
beams.

(20.a-¢)

The behavior of an "unconstrained" anisotropic
beam with initial twist can be studied by multiplying
Eq. (18) by the inverse of [k], which results in a
flexibility relationship. For example, applying an
axial force (P) produces extension as well as
bending and twisting that satisfies the following ra-
tios

I (21.a-¢)
e

.Q-
e

m|n>§
)
i
i
=i"lr?’

where ajj are the components of the flexibility matrix

(a] (=[k]"1). Similarly, applying a torsion moment
(Mz) results in extensnon and bending ranos of the

form

Kz
Q-__ _183&, f_”.=fﬁ, (22.a-¢)
0 344 8 24 8 444

Negatwe {or positive) ratios of (21.c) and (22.a)
correspond to untwisting (or further twisting) o
the beam as a result of an applied extension, and
contraction (or extension) from an applied twist
moment, respectively.

| n i

Three sets of numerical results are presented o
illustrate the capabilities of the current analytical
model and how the interaction of material and
pretwist definitions effect the extension-twist be-
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havior of thin-wall composite beams. Initially, a vali-
dation study is performed. Second, the extension-
twist coupling behavior of a pretwisted
graphite/epoxy strip, which is geometrically similar
0 a jet turbo-fan blade, is studied for an asymmetric
[t¢] and symmetric ([+¢]s) stacking sequence.
Finally, a pretwisted beam with a thin-wall D-section
composed of a graphite/epoxy woven fabric is ana-
lyzed for ditterent ply orientations and pretwist
definitions. This beam is geometrically similar to
blades used on tilt-rotor aircraft (NASA XV-15).

Verification i

Since published results do not currently exist for
the behavior of pretwisted thin-wall advanced
composite beams, the current modef was validated
using published results for pretwisted isotropic
beams and flat (untwisted) laminated composite
plates. Because the current approach will reduce
identically to the elasticity model of ref. [4] for
pretwisted isotropic beams, it is not necessary in
this limited space to show that the current model is

in exact agreement with the isotropic models of

Refs. [3-9,12] for helical beams having a thin ellipti-
cal cross-section. Interested readers should refer o
[4] for a detailed discussion and numerical results
that include the variation of section and extension-
twist coupling properties with pretwist definition
(initial twist level, initial twist axis location).

The extension-twist coupling behavior of an

axially-loaded flat laminated plate (a=0, Zi=n=0) with

an asymmetric stacking sequence [=¢) was analyzed
and the results were compared to classical lamina-
tion plate theory predictions {20]. The thin plate
cross section {¢/t=10) is composed of two plies of
unidirectional graphite/epoxy fibers, where each ply
is defined using 20 quadrilateral elements (see Fig.
2). The properties of the fiber system (Table 1) are
defined relative to an orthogonal reference frame
(1.2,3) where the 1-axis is coincident with the fiber
direction. The 1-2 plane of the fiber system is paral-
lel to the z-Z plane of the plate cross section and the
3 axis is coincident with the n axis. A ply angle ()
is used to locate the fiber direction (1-axis) relative
to the (z) axis, where a positive angle is defined as a
counterclockwise rotation about the 7 axis for the
upper ply and a counterclockwise rotation about the
-n axis for the lower ply. If ¢=0, then the fibers of
both the upper and lower plies are parallel to the z-
axis

The nondimensionalized ratio of the plate
untwist (8) for a given extensional strain (e) as a re-
sult of an applied force (P) can be expressed (from
Eq. 21.c) as;

6c. 24C

= --é“— (23.a)

A similar relationship can be developed from classical
laminated plate theory by making use of the inverse
o! the laminate stiffness matrix (commonly called
the "A-B-D" matrix);

BigNx/2

)C=B1s.c

A

=

()

_0;6=
e

Ay Nx

(23.b)
where Aq1 and B1g are the coefficients from the
inverse of the laminate stitfness matrix that are as-
sociated with the amount of extension strain and
twist curvature from an applied in-plane force (Ny),
respectively. In Fig. 3, the variation of this
twist/extension ratio as a function of ply angle (¢) is
presented for the current approach and for classical
laminated plate theory. These resuits illustrate that
the current approach is in exact agreement with the
classical laminated plate theory and that the maxi-
mum amount of positive (6>0) or negative (6<0)
plate twisting for a minimum amount of extension
strain (e) occurs when (¢) is equal to 120 or -120,
respectively. Furthermore, orientating the fibers at
either 00 or 80° will produce plate extension only
{8=0}.

retwi i m i ri

The extension-twist coupling behavior of a
pretwisted graphite/epoxy strip, which is geometri-
cally similar to aviation propeller and jet turbo-fan
blades (0.1<ac<0.2), is studied for an asymmetric
[zo] and symmetric ([x¢]s) stacking sequence. The
thin 2-ply asymmetric cross-section of the verifica-
tion study (see Fig. 2) will again be analyzed except
now the strip has initial twist defined about the
centroidal axis (§=7=0). In Fig. 4, the nondimen-
sionalized extension/wist flexibility coetficient
(a14E11c3) is presented as a function of ply angle
(¢) and nondimensionalized pretwist (ac). For low
pretwist levels (@c<0.01}, the (a14E11c¢”) curve
undergoes a slight downward shift. This shift is a
result of untwisting of the axially loaded pretwisted
beam and thus the flexibility coefficient becomes
more negative for negative ply angles, less positive
for positive ply angles, and the zero coefficient
value shifts to a positive ply angle. For moderate
pretwist levels (ac=0.10), the downward shift of
the curve is substantial, where the initial twist re-
lated coupling values are of the same order as the
material related coupling effects and the ply angles
for maximum coupling have increased by 49.
Furthermore, the ply angles for zero coupling has

shifted from 00 and -90° to 11° and 60°. Finally,
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for large pretwist levels (ac=0.20, 0.30), the
downward shift of the curve can be large enough
that eventually no positive or zero coupling exists
and thus an axially loaded pretwisted strip will al-
ways untwist independent of ply angle definition.

The variation in the extension stiffness as a
function of fiber angle and pretwist level is pre-
sented in Fig. 5, where EAg (=1/a11,) is defined as
the extension stiffness of a unidirectional flat strip
(a=0¢=0). The downward shift of the curves for
moderate to highly pretwisted strips was expected,
since it is well known that adding initial twist to an
isotropic beam will lower the extension stiffness
(see [4]). The shift of the relative maximum from
(¢=0) to a small positive ply angle is a result of using
the material coupling to counteract the
twist/exiension coupling associated with beam initial
twist. The ply angles for maximum extension stiff-
ness are equal to, for small initial twist levels, the
zero values of twist/extension flexibility (from Fig.
4). In Fig. 6, the twist/extension ratio (6c/e) is pre-
sented, where the maximum untwisting {negative)
for minimum extension strain generally occurs for
ply angies between 00 and -120. The ratios for
maximum (positive) twisting undergdo a signiticant
reduction and the ply angle definitions for zero
coupling are highly dependent upon the initial twist
level. Finally, for small to moderate pretwist levels,
the slopes of the curves can be exiremely sleep and
thus small ply angle changes will cause large changes
in the resulting ratios.

The torsion stiffness is presented in Fig. 7,
where GJo (=1/a444) is the nominal torsion stiff-
ness of a unidirectional flat strip (a=¢=0). For strips
with small initial twist (xc<0.01), the variation in the
torsion stiffness is nearly identical to a flat strip,
where the relative maximums occur at ¢=+45°. For
moderate {o large pretwist levels, the torsion stiff-
ness will increase (as expected), where the largest
increase occurs for small ply angles (near zero) with
the magnitude of the increase tapering off near
¢=+459. These results are most interesting in that
ply angles less than =459 undergo the largest per-
centage increase.

A contour plot of the twist/extension ratio
(6c/e) as a function of ply angle (¢) and initial twist
axis offset along the chord (£#0, n=0) for the 2-ply
asymmetric strip with initial twist (ac=0.10) is pre-
sented in Fig. 8. The dashed contour lines represent
a mid-level between the solid contour lines. The
maximum negative ratios (-35) occur when =0 and

9=-5°, whereas a local maximum positive ratio (+15)
can be found at £=0 and ¢=20° but a global positive
maximum will occur at large values of £fc. Thus, an
initially negative ratio can always be made zero or
Jositive by shifting the initial twist axis outward

from the centroid. Finally, a region exists (¢=459)
where the twist/extension ratio is independent of
initial twist axis location. '

This thin rectangular graphite/epoxy cross-
section (c/t=10) was also studied using a 4-ply sym-
metric ([t¢ls) stacking sequence, where each ply is
defined using 20 quadrilateral elements (80 elements
total).and a positive ply angle {(¢) on the top and
bottom plies is defined as a counterclockwise rota-
tion about the n axis and on the two inner plies as a
counterclockwise rotation about the -n axis. Initially,
the initial twist is defined to act through the section
centroid ((=n=0). The twist/extension ratio (6¢c/e)
is presented in Fig. 9, where extension-torsion be-
havior occurs as a result of initial twist, since a flat

_strip with a symmetric ply lay-up will always have

zero coupling. It is apparent that maximum untwist-
ing occurs with a 0° ply angle and for nonzero ply
configurations the amount of untwist is greatly re-
duced. Comparing Figs. 6 and 9, both cross-sec-
tions have the same magnitudes for ¢=00, but the
asymmetric ply definition provides greater freedom
for controlling (optimizing) twist/extension cou-
pling.

The variation in the extension (EA/EA,) and
torsion stiffnesses (GJ/GJy) are presented in Figs.
10 and 11, respectively, where the curves are sym-
metric with respect to ¢=00. Comparing the varia-
tion of the extension stiffness with the 2-ply asym-
metric results (Fig. 5), it is readily apparent that
both results agree for ¢=00 and the symmetric lay-
up results are nearly constant for small ply angles (-
100<¢<100), whereas the asymmetric results are
exiremely sensitive to small ply angles. Similarly, the
increase in the torsion stiffness agrees with the
asymmetric ply lay-up results (Fig. 6) for ¢=00,
¢>450, and ¢<-459, but the asymmetric ply lay-up
can have a much greater torsion stifiness for
00< (<450,

A contour plot of the twist/extension ratio
(8c/e) as a function of ply angle (¢) and initial twist
axis offset along the chord (£=0, n/=0) with initial
twist (ac=0.10) is presented in Fig. 12. Again, the
dashed contour lines represent a mid-level between
the solid contour lines. The maximum negative (-32)
extension/twist ratios occur with £=0 and ¢=0°,
where changing the ply angle or initial twist axis lo-
cation will only increase the ratio. The values for
zero coupling are independent of ply angle and thus
negative coupling will always exist as long as (-
0.28<¢7c <0.28), but this coupling can be smail for
large ply angles.
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The extension-twist coupling behavior of a
pretwisted beam with a thin-wall D-section com-
posed of a constant thickness graphite/epoxy wo-
ven fabric is analyzed for different ply [¢] orienta-
tions and pretwist definitions. This beam is geo-
metrically similar to the structural box beam used in
tilt-rotor aircraft blades (0.01<ac<0.10). The D-
section geometry is presented in Fig. 13, where 150
quadrilateral elements are used to define the single-
cell planform. The material properties of the
graphite/epoxy woven cloth are given in Table 1 and
a positive ply angle ¢ is defined as a counterclock-
wise rotation about a outward normal (n) that is
perpendicular section surface. Thus, the ply angle is
defined relative to the local element coordinate sys-
tem to simulate the wrapping of the woven cloth.
Even though the wall laminate properties are sym-
metric, as a result of treating the woven cloth as a
single ply, the resulting beam will experience
twist/extension coupling because the effective
cross-section has an asymmetric material definition.

The twist/extension ratio (6c/e) is presented in
Fig. 14, where the complete behavioral range can be
described over a 90° ply angle period, instead of
the 1800 period typical of uniaxial fibers. The flat
{a=0) beam section obviously behaves in a fashion
similar to the asymmetric ply definition (Fig. 6) with
positive and negative coupling for positive (0<¢
<459) and negative (-459<¢ <0) ply angles, respec-
tively. Adding initial twist, about the cross-section
centroid (5=0.523c¢, 1;=0), shifts the curves down-
ward with the largest changes in the magnitude oc-
curring with (-159<¢ <159). Finally, the magnitudes
are significantly less than the magnitudes associated
with the uniaxial fiberous material (asymmetric; Fig.
6, symmetric; Fig. 9) because the woven material
has a lower extension stiffness to shear stiffness
(E/G) ratio. A contour plot of the twist/extension
ratio (Bc/e) as a function of ply angle (¢) and initial
twist axis offset (0<yc<1, n=0) for (ac=0.10) is
presented in Fig. 15. This plot has many of the
same features of Fig. 8, with maximum positive and
negative regions occurring with the initial twist axis
acting through the cross-section centroid. The zero
coupling, which encircles the negative coupling, can
be approximated as a series of parallel (vertical)
lines, as opposed to the two horizontal parallel lines
for the symmetric strip (Fig. 12). Thus, the zero
coupling is nearly independent of the initial twist
axis location for most the chord length.
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Material properties of T300/5208
graphite/epoxy unidirectional fibers and
woven cloth.

unidirectional fibers woven cloth

Eq4q
E22
E33
G12 = G13 = Gz3
V12
Vi3
v23

80.32 GPa
80.32 GPa
10.75 GPa
5.65 GPa
0.050
0.239
0.239

132.2 GPa
10.75 GPa
10.75 GPa
5.65 GPa
0.239
0.239
0.400
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Fig. 10 Axial stiffness of a 4-ply symmetric [*¢]g
graphite/epoxy strip with initial twist about
the centroidal axis (E=n=0).

Fig. 8 Contour plot of the twist/extension ratio
for a 2-ply asymmetric [+¢] graphite/epoxy
pretwisted strip (ac=0.10).
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Fig. 12 Contour plot of twist/extension ratio for a
4-ply symmetric [+¢]s graphite/epoxy
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Fig. 13 Thin wall D-section composed of a single

layer [¢] of graphite/epoxy woven cloth.
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